"distribution shifts" Papers

38 papers found

A Multimodal BiMamba Network with Test-Time Adaptation for Emotion Recognition Based on Physiological Signals

Ziyu Jia, Tingyu Du, Zhengyu Tian et al.

NeurIPS 2025poster

CONDA: Adaptive Concept Bottleneck for Foundation Models Under Distribution Shifts

Jihye Choi, Jayaram Raghuram, Yixuan Li et al.

ICLR 2025poster

Conformal Prediction under Lévy-Prokhorov Distribution Shifts: Robustness to Local and Global Perturbations

Liviu Aolaritei, Julie Zhu, Oliver Wang et al.

NeurIPS 2025poster

COUNTS: Benchmarking Object Detectors and Multimodal Large Language Models under Distribution Shifts

Jiansheng Li, Xingxuan Zhang, Hao Zou et al.

CVPR 2025highlightarXiv:2504.10158
1
citations

D2SA: Dual-Stage Distribution and Slice Adaptation for Efficient Test-Time Adaptation in MRI Reconstruction

Lipei Zhang, Rui Sun, Zhongying Deng et al.

NeurIPS 2025posterarXiv:2503.20815

Enhancing Deep Batch Active Learning for Regression with Imperfect Data Guided Selection

Yinjie Min, Furong Xu, Xinyao Li et al.

NeurIPS 2025poster

Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation

Wenxuan Bao, Zhichen Zeng, Zhining Liu et al.

ICLR 2025posterarXiv:2410.06976
4
citations

OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad

Luyao Tang, Chaoqi Chen, Yuxuan Yuan et al.

CVPR 2025posterarXiv:2503.18695
5
citations

Quantifying Uncertainty in the Presence of Distribution Shifts

Yuli Slavutsky, David Blei

NeurIPS 2025posterarXiv:2506.18283
1
citations

RA-TTA: Retrieval-Augmented Test-Time Adaptation for Vision-Language Models

Youngjun Lee, Doyoung Kim, Junhyeok Kang et al.

ICLR 2025poster
5
citations

Rethinking Fair Representation Learning for Performance-Sensitive Tasks

Charles Jones, Fabio De Sousa Ribeiro, Mélanie Roschewitz et al.

ICLR 2025posterarXiv:2410.04120
5
citations

Rethinking Graph Prompts: Unraveling the Power of Data Manipulation in Graph Neural Networks

Chenyi Zi, Bowen LIU, Xiangguo SUN et al.

ICLR 2025poster

TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster

Kanghui Ning, Zijie Pan, Yu Liu et al.

NeurIPS 2025posterarXiv:2503.07649
11
citations

Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data

Xingyu Ren, Pengwei Liu, Pengkai Wang et al.

NeurIPS 2025poster

Universal generalization guarantees for Wasserstein distributionally robust models

Tam Le, Jerome Malick

ICLR 2025posterarXiv:2402.11981
7
citations

An Empirical Study Into What Matters for Calibrating Vision-Language Models

Weijie Tu, Weijian Deng, Dylan Campbell et al.

ICML 2024poster

CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts

Yichao Cai, Yuhang Liu, Zhen Zhang et al.

ECCV 2024posterarXiv:2311.16445
11
citations

COALA: A Practical and Vision-Centric Federated Learning Platform

Weiming Zhuang, Jian Xu, Chen Chen et al.

ICML 2024poster

Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts

Ha Manh Bui, Anqi Liu

ICML 2024poster

Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization

Haoyang Li, Xin Wang, Zeyang Zhang et al.

ICML 2024poster

Efficient Diffusion-Driven Corruption Editor for Test-Time Adaptation

Yeongtak Oh, Jonghyun Lee, Jooyoung Choi et al.

ECCV 2024posterarXiv:2403.10911
6
citations

Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize

Tianren Zhang, Chujie Zhao, Guanyu Chen et al.

ICML 2024poster

FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering

Yongxin Guo, Xiaoying Tang, Tao Lin

ICML 2024poster

Few-shot Adaptation to Distribution Shifts By Mixing Source and Target Embeddings

Yihao Xue, Ali Payani, Yu Yang et al.

ICML 2024poster

Graph Invariant Learning with Subgraph Co-mixup for Out-of-Distribution Generalization

Tianrui Jia, Haoyang Li, Cheng Yang et al.

AAAI 2024paperarXiv:2312.10988
32
citations

Graph Structure Extrapolation for Out-of-Distribution Generalization

Xiner Li, Shurui Gui, Youzhi Luo et al.

ICML 2024poster

How Do Nonlinear Transformers Learn and Generalize in In-Context Learning?

Hongkang Li, Meng Wang, Songtao Lu et al.

ICML 2024poster

IW-GAE: Importance weighted group accuracy estimation for improved calibration and model selection in unsupervised domain adaptation

Taejong Joo, Diego Klabjan

ICML 2024poster

Learning by Erasing: Conditional Entropy Based Transferable Out-of-Distribution Detection

Meng Xing, Zhiyong Feng, Yong Su et al.

AAAI 2024paperarXiv:2204.11041
4
citations

Learning to Intervene on Concept Bottlenecks

David Steinmann, Wolfgang Stammer, Felix Friedrich et al.

ICML 2024poster

Measuring Stochastic Data Complexity with Boltzmann Influence Functions

Nathan Ng, Roger Grosse, Marzyeh Ghassemi

ICML 2024poster

Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains

Steven Wilkins-Reeves, Xu Chen, Qi Ma et al.

ICML 2024poster

Online Adaptive Anomaly Thresholding with Confidence Sequences

Sophia Sun, Abishek Sankararaman, Balakrishnan Narayanaswamy

ICML 2024poster

RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction

Yemin Yu, Luotian Yuan, Ying WEI et al.

AAAI 2024paperarXiv:2312.10900

Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup

Damien Teney, Jindong Wang, Ehsan Abbasnejad

ICML 2024poster

Statistical Inference Under Constrained Selection Bias

Santiago Cortes-Gomez, Mateo Dulce Rubio, Carlos Miguel Patiño et al.

ICML 2024poster

Statistical Properties of Robust Satisficing

zhiyi li, Yunbei Xu, Ruohan Zhan

ICML 2024poster

Test-Time Degradation Adaptation for Open-Set Image Restoration

Yuanbiao Gou, Haiyu Zhao, Boyun Li et al.

ICML 2024spotlight