2025 Poster "distribution shift" Papers

10 papers found

AdaWM: Adaptive World Model based Planning for Autonomous Driving

Hang Wang, Xin Ye, Feng Tao et al.

ICLR 2025posterarXiv:2501.13072
13
citations

ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining

Xincheng Yao, Yan Luo, Zefeng Qian et al.

NeurIPS 2025posterarXiv:2511.05245
1
citations

Balanced Direction from Multifarious Choices: Arithmetic Meta-Learning for Domain Generalization

Xiran Wang, Jian Zhang, Lei Qi et al.

CVPR 2025posterarXiv:2503.18987
3
citations

Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning

Yaxin Hou, Bo Han, Yuheng Jia et al.

NeurIPS 2025posterarXiv:2510.03993

Knowledge Distillation of Uncertainty using Deep Latent Factor Model

Sehyun Park, Jongjin Lee, Yunseop Shin et al.

NeurIPS 2025posterarXiv:2510.19290

Learning Neural Networks with Distribution Shift: Efficiently Certifiable Guarantees

Gautam Chandrasekaran, Adam Klivans, Lin Lin Lee et al.

ICLR 2025posterarXiv:2502.16021
1
citations

MetaOOD: Automatic Selection of OOD Detection Models

Yuehan Qin, Yichi Zhang, Yi Nian et al.

ICLR 2025posterarXiv:2410.03074
16
citations

Noisy Test-Time Adaptation in Vision-Language Models

Chentao Cao, Zhun Zhong, (Andrew) Zhanke Zhou et al.

ICLR 2025posterarXiv:2502.14604
4
citations

Optimizing importance weighting in the presence of sub-population shifts

Floris Holstege, Bram Wouters, Noud Giersbergen et al.

ICLR 2025posterarXiv:2410.14315
1
citations

Test-Time Ensemble via Linear Mode Connectivity: A Path to Better Adaptation

Byungjai Kim, Chanho Ahn, Wissam Baddar et al.

ICLR 2025poster
3
citations