"deep neural networks" Papers

11 papers found

MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework

Ping Guo, Cheng Gong, Fei Liu et al.

CVPR 2025posterarXiv:2501.07251

Some Optimizers are More Equal: Understanding the Role of Optimizers in Group Fairness

Mojtaba Kolahdouzi, Hatice Gunes, Ali Etemad

NeurIPS 2025spotlightarXiv:2504.14882

Variational Learning Finds Flatter Solutions at the Edge of Stability

Avrajit Ghosh, Bai Cong, Rio Yokota et al.

NeurIPS 2025spotlightarXiv:2506.12903
1
citations

Achieving Margin Maximization Exponentially Fast via Progressive Norm Rescaling

Mingze Wang, Zeping Min, Lei Wu

ICML 2024poster

Input Margins Can Predict Generalization Too

Coenraad Mouton, Marthinus Wilhelmus Theunissen, Marelie H Davel

AAAI 2024paperarXiv:2308.15466
5
citations

MFABA: A More Faithful and Accelerated Boundary-Based Attribution Method for Deep Neural Networks

Zhiyu Zhu, Huaming Chen, Jiayu Zhang et al.

AAAI 2024paperarXiv:2312.13630
14
citations

Robust Universal Adversarial Perturbations

Changming Xu, Gagandeep Singh

ICML 2024poster

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Arshia Soltani Moakhar, Eugenia Iofinova, Elias Frantar et al.

ICML 2024poster

Towards Certified Unlearning for Deep Neural Networks

Binchi Zhang, Yushun Dong, Tianhao Wang et al.

ICML 2024poster

United We Stand: Using Epoch-Wise Agreement of Ensembles to Combat Overfit

Uri Stern, Daniel Shwartz, Daphna Weinshall

AAAI 2024paperarXiv:2310.11077

Unveiling Privacy, Memorization, and Input Curvature Links

Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi et al.

ICML 2024poster