2024 "convergence rate analysis" Papers

12 papers found

Accelerated Algorithms for Constrained Nonconvex-Nonconcave Min-Max Optimization and Comonotone Inclusion

Yang Cai, Argyris Oikonomou, Weiqiang Zheng

ICML 2024posterarXiv:2206.05248

Accelerated Policy Gradient: On the Convergence Rates of the Nesterov Momentum for Reinforcement Learning

Yen-Ju Chen, Nai-Chieh Huang, Ching-pei Lee et al.

ICML 2024posterarXiv:2310.11897

Accelerating Convergence of Score-Based Diffusion Models, Provably

Gen Li, Yu Huang, Timofey Efimov et al.

ICML 2024posterarXiv:2403.03852

A Doubly Recursive Stochastic Compositional Gradient Descent Method for Federated Multi-Level Compositional Optimization

Hongchang Gao

ICML 2024poster

Can Gaussian Sketching Converge Faster on a Preconditioned Landscape?

Yilong Wang, Haishan Ye, Guang Dai et al.

ICML 2024poster

Double Momentum Method for Lower-Level Constrained Bilevel Optimization

Wanli Shi, Yi Chang, Bin Gu

ICML 2024posterarXiv:2406.17386

Enabling Uncertainty Estimation in Iterative Neural Networks

Nikita Durasov, Doruk Oner, Jonathan Donier et al.

ICML 2024posterarXiv:2403.16732

Federated Representation Learning in the Under-Parameterized Regime

Renpu Liu, Cong Shen, Jing Yang

ICML 2024posterarXiv:2406.04596

On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control

Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang et al.

ICML 2024posterarXiv:2106.08414

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Konstantin Mishchenko, Aaron Defazio

ICML 2024posterarXiv:2306.06101

Stochastic Weakly Convex Optimization beyond Lipschitz Continuity

Wenzhi Gao, Qi Deng

ICML 2024posterarXiv:2401.13971

Understanding Stochastic Natural Gradient Variational Inference

Kaiwen Wu, Jacob Gardner

ICML 2024posterarXiv:2406.01870