"contextual bandits" Papers

25 papers found

Contextual Thompson Sampling via Generation of Missing Data

Kelly W Zhang, Tianhui Cai, Hongseok Namkoong et al.

NeurIPS 2025posterarXiv:2502.07064
2
citations

Cross-Domain Off-Policy Evaluation and Learning for Contextual Bandits

Yuta Natsubori, Masataka Ushiku, Yuta Saito

ICLR 2025poster

Feel-Good Thompson Sampling for Contextual Bandits: a Markov Chain Monte Carlo Showdown

Emile Anand, Sarah Liaw

NeurIPS 2025posterarXiv:2507.15290
1
citations

Geometry Meets Incentives: Sample-Efficient Incentivized Exploration with Linear Contexts

Ben Schiffer, Mark Sellke

NeurIPS 2025spotlightarXiv:2506.01685

MultiScale Contextual Bandits for Long Term Objectives

Richa Rastogi, Yuta Saito, Thorsten Joachims

NeurIPS 2025posterarXiv:2503.17674

Second Order Bounds for Contextual Bandits with Function Approximation

Aldo Pacchiano

ICLR 2025posterarXiv:2409.16197
7
citations

Sharp Analysis for KL-Regularized Contextual Bandits and RLHF

Heyang Zhao, Chenlu Ye, Quanquan Gu et al.

NeurIPS 2025posterarXiv:2411.04625
14
citations

Statistical Parity with Exponential Weights

Stephen Pasteris, Chris Hicks, Vasilios Mavroudis

NeurIPS 2025poster

True Impact of Cascade Length in Contextual Cascading Bandits

Hyun-jun Choi, Joongkyu Lee, Min-hwan Oh

NeurIPS 2025poster

Variance-Aware Feel-Good Thompson Sampling for Contextual Bandits

Xuheng Li, Quanquan Gu

NeurIPS 2025posterarXiv:2511.02123

$\mathtt{VITS}$ : Variational Inference Thompson Sampling for contextual bandits

Pierre Clavier, Tom Huix, Alain Oliviero Durmus

ICML 2024poster

A Contextual Combinatorial Bandit Approach to Negotiation

Yexin Li, Zhancun Mu, Siyuan Qi

ICML 2024poster

Adaptively Learning to Select-Rank in Online Platforms

Jingyuan Wang, Perry Dong, Ying Jin et al.

ICML 2024poster

Borda Regret Minimization for Generalized Linear Dueling Bandits

Yue Wu, Tao Jin, Qiwei Di et al.

ICML 2024poster

Efficient Contextual Bandits with Uninformed Feedback Graphs

Mengxiao Zhang, Yuheng Zhang, Haipeng Luo et al.

ICML 2024poster

Fast and Sample Efficient Multi-Task Representation Learning in Stochastic Contextual Bandits

Jiabin Lin, Shana Moothedath, Namrata Vaswani

ICML 2024poster

Federated Contextual Cascading Bandits with Asynchronous Communication and Heterogeneous Users

Hantao Yang, Xutong Liu, Zhiyong Wang et al.

AAAI 2024paperarXiv:2402.16312
9
citations

High-dimensional Linear Bandits with Knapsacks

Wanteng Ma, Dong Xia, Jiashuo Jiang

ICML 2024poster

Incentivized Learning in Principal-Agent Bandit Games

Antoine Scheid, Daniil Tiapkin, Etienne Boursier et al.

ICML 2024poster

In-Context Reinforcement Learning for Variable Action Spaces

Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov et al.

ICML 2024poster

Low-Rank Bandits via Tight Two-to-Infinity Singular Subspace Recovery

Yassir Jedra, William Réveillard, Stefan Stojanovic et al.

ICML 2024poster

More Benefits of Being Distributional: Second-Order Bounds for Reinforcement Learning

Kaiwen Wang, Owen Oertell, Alekh Agarwal et al.

ICML 2024poster

Prospective Side Information for Latent MDPs

Jeongyeol Kwon, Yonathan Efroni, Shie Mannor et al.

ICML 2024spotlight

Randomized Confidence Bounds for Stochastic Partial Monitoring

Maxime Heuillet, Ola Ahmad, Audrey Durand

ICML 2024poster

The Non-linear $F$-Design and Applications to Interactive Learning

Alekh Agarwal, Jian Qian, Alexander Rakhlin et al.

ICML 2024poster