"binary classification" Papers

17 papers found

A No Free Lunch Theorem for Human-AI Collaboration

Kenny Peng, Nikhil Garg, Jon Kleinberg

AAAI 2025paperarXiv:2411.15230
5
citations

Balancing Positive and Negative Classification Error Rates in Positive-Unlabeled Learning

Ximing Li, Yuanchao Dai, Bing Wang et al.

NEURIPS 2025poster

Efficient PAC Learning for Realizable-Statistic Models via Convex Surrogates

Shivani Agarwal

NEURIPS 2025poster

Estimating Model Performance Under Covariate Shift Without Labels

Jakub Białek, Juhani Kivimäki, Wojciech Kuberski et al.

NEURIPS 2025posterarXiv:2401.08348
6
citations

Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks

Binghui Li, Zhixuan Pan, Kaifeng Lyu et al.

ICLR 2025posterarXiv:2410.10322

On Agnostic PAC Learning in the Small Error Regime

Julian Asilis, Mikael Møller Høgsgaard, Grigoris Velegkas

NEURIPS 2025spotlightarXiv:2502.09496

Optimal and Provable Calibration in High-Dimensional Binary Classification: Angular Calibration and Platt Scaling

Yufan Li, Pragya Sur

NEURIPS 2025spotlightarXiv:2502.15131

Provable weak-to-strong generalization via benign overfitting

David Wu, Anant Sahai

ICLR 2025posterarXiv:2410.04638
14
citations

QuanDA: Quantile-Based Discriminant Analysis for High-Dimensional Imbalanced Classification

Qian Tang, Yuwen Gu, Boxiang Wang

NEURIPS 2025poster

The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model

Kaito Takanami, Takashi Takahashi, Ayaka Sakata

NEURIPS 2025posterarXiv:2501.16226
2
citations

A General Online Algorithm for Optimizing Complex Performance Metrics

Wojciech Kotlowski, Marek Wydmuch, Erik Schultheis et al.

ICML 2024poster

Beyond the ROC Curve: Classification Trees Using Cost-Optimal Curves, with Application to Imbalanced Datasets

Magzhan Gabidolla, Arman Zharmagambetov, Miguel Carreira-Perpinan

ICML 2024poster

Consistent Adversarially Robust Linear Classification: Non-Parametric Setting

Elvis Dohmatob

ICML 2024poster

Interplay of ROC and Precision-Recall AUCs: Theoretical Limits and Practical Implications in Binary Classification

Martin Mihelich, François Castagnos, Charles Dognin

ICML 2024poster

Positive and Unlabeled Learning with Controlled Probability Boundary Fence

Changchun Li, Yuanchao Dai, Lei Feng et al.

ICML 2024poster

Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks

Liam Collins, Hamed Hassani, Mahdi Soltanolkotabi et al.

ICML 2024posterarXiv:2307.06887

Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup

Damien Teney, Jindong Wang, Ehsan Abbasnejad

ICML 2024posterarXiv:2305.16817