"bayesian neural networks" Papers

11 papers found

Bridging the Gap between Variational Inference and Stochastic Gradient MCMC in Function Space

Mengjing Wu, Junyu Xuan, Jie Lu

ICLR 2025poster

Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification

Kaizheng Wang, Fabio Cuzzolin, Keivan Shariatmadar et al.

ICLR 2025posterarXiv:2405.15047
3
citations

Deep Kernel Posterior Learning under Infinite Variance Prior Weights

Jorge Loría, Anindya Bhadra

ICLR 2025posterarXiv:2410.01284

Variational Bayesian Pseudo-Coreset

Hyungi Lee, Seungyoo Lee, Juho Lee

ICLR 2025posterarXiv:2502.21143

VIKING: Deep variational inference with stochastic projections

Samuel Matthiesen, Hrittik Roy, Nicholas Krämer et al.

NeurIPS 2025posterarXiv:2510.23684

A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta et al.

ICML 2024poster

Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?

Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou et al.

ICML 2024poster

Improving Neural Additive Models with Bayesian Principles

Kouroche Bouchiat, Alexander Immer, Hugo Yèche et al.

ICML 2024poster

Learning to Explore for Stochastic Gradient MCMC

SeungHyun Kim, Seohyeon Jung, SeongHyeon Kim et al.

ICML 2024poster

Partially Stochastic Infinitely Deep Bayesian Neural Networks

Sergio Calvo Ordoñez, Matthieu Meunier, Francesco Piatti et al.

ICML 2024poster

Reparameterized Importance Sampling for Robust Variational Bayesian Neural Networks

Yunfei Long, Zilin Tian, Liguo Zhang et al.

ICML 2024poster