"anomaly detection" Papers

31 papers found

ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining

Xincheng Yao, Yan Luo, Zefeng Qian et al.

NeurIPS 2025posterarXiv:2511.05245
1
citations

CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching

Xingjian Wu, Xiangfei Qiu, Zhengyu Li et al.

ICLR 2025posterarXiv:2410.12261
59
citations

DiffGAD: A Diffusion-based Unsupervised Graph Anomaly Detector

Jinghan Li, Yuan Gao, Jinda Lu et al.

ICLR 2025posterarXiv:2410.06549
8
citations

Fairness-aware Anomaly Detection via Fair Projection

Feng Xiao, Xiaoying Tang, Jicong Fan

NeurIPS 2025posterarXiv:2505.11132

Kaputt: A Large-Scale Dataset for Visual Defect Detection

Sebastian Höfer, Dorian Henning, Artemij Amiranashvili et al.

ICCV 2025posterarXiv:2510.05903
1
citations

Multivariate Time Series Anomaly Detection with Idempotent Reconstruction

Xin Sun, Heng Zhou, Chao Li

NeurIPS 2025poster

Odd-One-Out: Anomaly Detection by Comparing with Neighbors

Ankan Kumar Bhunia, Changjian Li, Hakan Bilen

CVPR 2025posterarXiv:2406.20099
1
citations

Toward Long-Tailed Online Anomaly Detection through Class-Agnostic Concepts

Chiao-An Yang, Kuan-Chuan Peng, Raymond A. Yeh

ICCV 2025posterarXiv:2507.16946

A Comprehensive Augmentation Framework for Anomaly Detection

Lin Jiang, Yaping Yan

AAAI 2024paperarXiv:2308.15068
16
citations

A Diffusion-Based Framework for Multi-Class Anomaly Detection

Haoyang He, Jiangning Zhang, Hongxu Chen et al.

AAAI 2024paperarXiv:2312.06607
40
citations

Beyond Individual Input for Deep Anomaly Detection on Tabular Data

Hugo Thimonier, Fabrice Popineau, Arpad Rimmel et al.

ICML 2024poster

Contamination-Resilient Anomaly Detection via Adversarial Learning on Partially-Observed Normal and Anomalous Data

Wenxi Lv, Qinliang Su, Hai Wan et al.

ICML 2024poster

Continuous Memory Representation for Anomaly Detection

Joo Chan Lee, Taejune Kim, Eunbyung Park et al.

ECCV 2024posterarXiv:2402.18293
19
citations

Explain Temporal Black-Box Models via Functional Decomposition

Linxiao Yang, Yunze Tong, Xinyue Gu et al.

ICML 2024oral

FedREDefense: Defending against Model Poisoning Attacks for Federated Learning using Model Update Reconstruction Error

Yueqi Xie, Minghong Fang, Neil Gong

ICML 2024poster

GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features

Luc Sträter, Mohammadreza Salehi, Efstratios Gavves et al.

ECCV 2024posterarXiv:2407.12427
27
citations

GOODAT: Towards Test-Time Graph Out-of-Distribution Detection

Luzhi Wang, Di Jin, He Zhang et al.

AAAI 2024paperarXiv:2401.06176
20
citations

Learning Anomalies with Normality Prior for Unsupervised Video Anomaly Detection

Haoyue Shi, Le Wang, Sanping Zhou et al.

ECCV 2024poster
1
citations

MF-CLR: Multi-Frequency Contrastive Learning Representation for Time Series

Jufang Duan, Wei Zheng, Yangzhou Du et al.

ICML 2024poster

ODIM: Outlier Detection via Likelihood of Under-Fitted Generative Models

Dongha Kim, Jaesung Hwang, Jongjin Lee et al.

ICML 2024poster

Online Adaptive Anomaly Thresholding with Confidence Sequences

Sophia Sun, Abishek Sankararaman, Balakrishnan Narayanaswamy

ICML 2024poster

Online Isolation Forest

Filippo Leveni, Guilherme Weigert Cassales, Bernhard Pfahringer et al.

ICML 2024poster

Root Cause Analysis in Microservice Using Neural Granger Causal Discovery

Cheng-Ming Lin, Ching Chang, Wei-Yao Wang et al.

AAAI 2024paperarXiv:2402.01140
29
citations

Single-Model Attribution of Generative Models Through Final-Layer Inversion

Mike Laszkiewicz, Jonas Ricker, Johannes Lederer et al.

ICML 2024poster

Sobolev Space Regularised Pre Density Models

Mark Kozdoba, Binyamin Perets, Shie Mannor

ICML 2024poster

Timer: Generative Pre-trained Transformers Are Large Time Series Models

Yong Liu, Haoran Zhang, Chenyu Li et al.

ICML 2024poster

TimesURL: Self-Supervised Contrastive Learning for Universal Time Series Representation Learning

jiexi Liu, Songcan Chen

AAAI 2024paperarXiv:2312.15709
102
citations

TSLANet: Rethinking Transformers for Time Series Representation Learning

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen et al.

ICML 2024oral

UP2ME: Univariate Pre-training to Multivariate Fine-tuning as a General-purpose Framework for Multivariate Time Series Analysis

Yunhao Zhang, Liu Minghao, Shengyang Zhou et al.

ICML 2024oral

VCP-CLIP: A visual context prompting model for zero-shot anomaly segmentation

Zhen Qu, Xian Tao, Mukesh Prasad et al.

ECCV 2024posterarXiv:2407.12276
55
citations

When and How Does In-Distribution Label Help Out-of-Distribution Detection?

Xuefeng Du, Yiyou Sun, Sharon Li

ICML 2024poster