"expressive power" Papers

16 papers found

A Hierarchy of Graphical Models for Counterfactual Inferences

Hongshuo Yang, Elias Bareinboim

NEURIPS 2025poster

A Little Depth Goes a Long Way: The Expressive Power of Log-Depth Transformers

Will Merrill, Ashish Sabharwal

NEURIPS 2025posterarXiv:2503.03961
31
citations

Bridging Theory and Practice in Link Representation with Graph Neural Networks

Veronica Lachi, Francesco Ferrini, Antonio Longa et al.

NEURIPS 2025spotlightarXiv:2506.24018
2
citations

Dung’s Argumentation Framework: Unveiling the Expressive Power with Inconsistent Databases

Yasir Mahmood, Markus Hecher, Axel-Cyrille Ngonga Ngomo

AAAI 2025paperarXiv:2412.11617
2
citations

Learning More Expressive General Policies for Classical Planning Domains

Simon Ståhlberg, Blai Bonet, Hector Geffner

AAAI 2025paperarXiv:2403.11734
2
citations

The Computational Complexity of Counting Linear Regions in ReLU Neural Networks

Moritz Stargalla, Christoph Hertrich, Daniel Reichman

NEURIPS 2025posterarXiv:2505.16716
2
citations

Topological Blindspots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity

Yam Eitan, Yoav Gelberg, Guy Bar-Shalom et al.

ICLR 2025posterarXiv:2408.05486
10
citations

Towards Explaining the Power of Constant-depth Graph Neural Networks for Structured Linear Programming

Qian Li, Minghui Ouyang, Tian Ding et al.

ICLR 2025poster
1
citations

Aligning Transformers with Weisfeiler-Leman

Luis Müller, Christopher Morris

ICML 2024posterarXiv:2406.03148

Homomorphism Counts for Graph Neural Networks: All About That Basis

Emily Jin, Michael Bronstein, Ismail Ceylan et al.

ICML 2024posterarXiv:2402.08595

Improving Expressive Power of Spectral Graph Neural Networks with Eigenvalue Correction

Kangkang Lu, Yanhua Yu, Hao Fei et al.

AAAI 2024paperarXiv:2401.15603
9
citations

On dimensionality of feature vectors in MPNNs

César Bravo, Alexander Kozachinskiy, Cristobal Rojas

ICML 2024posterarXiv:2402.03966

On the Universality of Volume-Preserving and Coupling-Based Normalizing Flows

Felix Draxler, Stefan Wahl, Christoph Schnörr et al.

ICML 2024posterarXiv:2402.06578

Position: Future Directions in the Theory of Graph Machine Learning

Christopher Morris, Fabrizio Frasca, Nadav Dym et al.

ICML 2024poster

The Expressive Power of Path-Based Graph Neural Networks

Caterina Graziani, Tamara Drucks, Fabian Jogl et al.

ICML 2024poster

Weisfeiler-Leman at the margin: When more expressivity matters

Billy Franks, Christopher Morris, Ameya Velingker et al.

ICML 2024posterarXiv:2402.07568