Poster "bayesian inference" Papers

23 papers found

Bayesian Concept Bottleneck Models with LLM Priors

Jean Feng, Avni Kothari, Lucas Zier et al.

NEURIPS 2025arXiv:2410.15555
10
citations

Bayesian Test-Time Adaptation for Vision-Language Models

Lihua Zhou, Mao Ye, Shuaifeng Li et al.

CVPR 2025arXiv:2503.09248
11
citations

Bi-Directional Communication-Efficient Stochastic FL via Remote Source Generation

Maximilian Egger, Rawad Bitar, Antonia Wachter-Zeh et al.

NEURIPS 2025

BSemiFL: Semi-supervised Federated Learning via a Bayesian Approach

Haozhao Wang, Shengyu Wang, Jiaming Li et al.

ICML 2025

ContraGS: Codebook-Condensed and Trainable Gaussian Splatting for Fast, Memory-Efficient Reconstruction

Sankeerth Durvasula, Sharanshangar Muhunthan, Zain Moustafa et al.

ICCV 2025arXiv:2509.03775
1
citations

Efficient Reinforcement Learning with Large Language Model Priors

Xue Yan, Yan Song, Xidong Feng et al.

ICLR 2025arXiv:2410.07927
21
citations

Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models

Julius Vetter, Manuel Gloeckler, Daniel Gedon et al.

NEURIPS 2025arXiv:2504.17660
4
citations

Model-Informed Flows for Bayesian Inference

Joohwan Ko, Justin Domke

NEURIPS 2025arXiv:2505.24243

Multilevel neural simulation-based inference

Yuga Hikida, Ayush Bharti, Niall Jeffrey et al.

NEURIPS 2025arXiv:2506.06087
5
citations

Parallelizing MCMC Across the Sequence Length

David Zoltowski, Skyler Wu, Xavier Gonzalez et al.

NEURIPS 2025arXiv:2508.18413
3
citations

Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation

Ting Wei, Biao Mei, Junliang Lyu et al.

NEURIPS 2025arXiv:2505.14161
1
citations

Predictive Coding Enhances Meta-RL To Achieve Interpretable Bayes-Optimal Belief Representation Under Partial Observability

Po-Chen Kuo, Han Hou, Will Dabney et al.

NEURIPS 2025arXiv:2510.22039

Reverse Diffusion Sequential Monte Carlo Samplers

Luhuan Wu, Yi Han, Christian Andersson Naesseth et al.

NEURIPS 2025arXiv:2508.05926
6
citations

Squared families are useful conjugate priors

Russell Tsuchida, Jiawei Liu, Cheng Soon Ong et al.

NEURIPS 2025

The Polynomial Stein Discrepancy for Assessing Moment Convergence

Narayan Srinivasan, Matthew Sutton, Christopher Drovandi et al.

ICML 2025arXiv:2412.05135

Bayesian Detector Combination for Object Detection with Crowdsourced Annotations

Zhi Qin Tan, Olga Isupova, Gustavo Carneiro et al.

ECCV 2024arXiv:2407.07958
1
citations

Bayesian Knowledge Distillation: A Bayesian Perspective of Distillation with Uncertainty Quantification

Luyang Fang, Yongkai Chen, Wenxuan Zhong et al.

ICML 2024

Diffusive Gibbs Sampling

Wenlin Chen, Mingtian Zhang, Brooks Paige et al.

ICML 2024arXiv:2402.03008
17
citations

Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective

Fabian Falck, Ziyu Wang, Christopher Holmes

ICML 2024arXiv:2406.00793
42
citations

Kernel Semi-Implicit Variational Inference

Ziheng Cheng, Longlin Yu, Tianyu Xie et al.

ICML 2024arXiv:2405.18997
8
citations

Listening to the noise: Blind Denoising with Gibbs Diffusion

David Heurtel-Depeiges, Charles Margossian, Ruben Ohana et al.

ICML 2024arXiv:2402.19455
4
citations

Logistic Variational Bayes Revisited

Michael Komodromos, Marina Evangelou, Sarah Filippi

ICML 2024arXiv:2406.00713

Path-Guided Particle-based Sampling

Mingzhou Fan, Ruida Zhou, Chao Tian et al.

ICML 2024arXiv:2412.03312
8
citations