2025 Papers

21,856 papers found • Page 431 of 438

What's New in My Data? Novelty Exploration via Contrastive Generation

Masaru Isonuma, Ivan Titov

ICLR 2025poster

What's Producible May Not Be Reachable: Measuring the Steerability of Generative Models

Keyon Vafa, Sarah Bentley, Jon Kleinberg et al.

NeurIPS 2025posterarXiv:2503.17482
2
citations

What's the Move? Hybrid Imitation Learning via Salient Points

Priya Sundaresan, Hengyuan Hu, Quan Vuong et al.

ICLR 2025posterarXiv:2412.05426
11
citations

What to align in multimodal contrastive learning?

Benoit Dufumier, Javiera Castillo Navarro, Devis Tuia et al.

ICLR 2025posterarXiv:2409.07402
30
citations

What to Distill? Fast Knowledge Distillation with Adaptive Sampling

Byungchul Chae, Seonyeong Heo

ICCV 2025highlight

What to Preserve and What to Transfer: Faithful, Identity-Preserving Diffusion-based Hairstyle Transfer

Chaeyeon Chung, Sunghyun Park, Jeongho Kim et al.

AAAI 2025paperarXiv:2408.16450
4
citations

What We Miss Matters: Learning from the Overlooked in Point Cloud Transformers

Yi Wang, Jiaze Wang, Ziyu Guo et al.

NeurIPS 2025poster

What we need is explicit controllability: Training 3D gaze estimator using only facial images

Tingwei Li, Jun Bao, Zhenzhong Kuang et al.

ICCV 2025poster

What You Have is What You Track: Adaptive and Robust Multimodal Tracking

Yuedong Tan, Jiawei Shao, Eduard Zamfir et al.

ICCV 2025posterarXiv:2507.05899
3
citations

When Additive Noise Meets Unobserved Mediators: Bivariate Denoising Diffusion for Causal Discovery

Dominik Meier, Sujai Hiremath, PROMIT GHOSAL et al.

NeurIPS 2025poster

When Anchors Meet Cold Diffusion: A Multi-Stage Approach to Lane Detection

Bo-Lun Huang, Tzu-Hsiang Ni, Feng-Kai Huang et al.

ICCV 2025poster

When and how can inexact generative models still sample from the data manifold?

Nisha Chandramoorthy, Adriaan de Clercq

NeurIPS 2025posterarXiv:2508.07581

When and How Does CLIP Enable Domain and Compositional Generalization?

Elias Kempf, Simon Schrodi, Max Argus et al.

ICML 2025spotlightarXiv:2502.09507

When and Where do Data Poisons Attack Textual Inversion?

Jeremy Styborski, Mingzhi Lyu, Jiayou Lu et al.

ICCV 2025poster

When Are Concepts Erased From Diffusion Models?

Kevin Lu, Nicky Kriplani, Rohit Gandikota et al.

NeurIPS 2025posterarXiv:2505.17013
5
citations

When Attention Sink Emerges in Language Models: An Empirical View

Xiangming Gu, Tianyu Pang, Chao Du et al.

ICLR 2025posterarXiv:2410.10781
90
citations

When Bad Data Leads to Good Models

Kenneth Li, Yida Chen, Fernanda Viégas et al.

ICML 2025poster

When can in-context learning generalize out of task distribution?

Chase Goddard, Lindsay Smith, Wave Ngampruetikorn et al.

ICML 2025poster

When Can Model-Free Reinforcement Learning be Enough for Thinking?

Josiah Hanna, Nicholas Corrado

NeurIPS 2025posterarXiv:2506.17124

When Can Proxies Improve the Sample Complexity of Preference Learning?

Yuchen Zhu, Daniel Augusto de Souza, Zhengyan Shi et al.

ICML 2025poster

When Can We Approximate Wide Contrastive Models with Neural Tangent Kernels and Principal Component Analysis?

Gautham Govind Anil, Pascal Esser, Debarghya Ghoshdastidar

AAAI 2025paperarXiv:2403.08673
1
citations

When Causal Dynamics Matter: Adapting Causal Strategies through Meta-Aware Interventions

Moritz Willig, Tim Woydt, Devendra Singh Dhami et al.

NeurIPS 2025poster

When Confidence Fails: Revisiting Pseudo-Label Selection in Semi-supervised Semantic Segmentation

Pan Liu, Jinshi Liu

ICCV 2025highlightarXiv:2509.16704
1
citations

When Data Can't Meet: Estimating Correlation Across Privacy Barriers

Abhinav Chakraborty, Arnab Auddy, T. Tony Cai

NeurIPS 2025spotlight

When Data-Free Knowledge Distillation Meets Non-Transferable Teacher: Escaping Out-of-Distribution Trap is All You Need

Ziming Hong, Runnan Chen, Zengmao Wang et al.

ICML 2025posterarXiv:2507.04119

When Diffusion Models Memorize: Inductive Biases in Probability Flow of Minimum-Norm Shallow Neural Nets

Chen Zeno, Hila Manor, Gregory Ongie et al.

ICML 2025posterarXiv:2506.19031
5
citations

When Does Closeness in Distribution Imply Representational Similarity? An Identifiability Perspective

Beatrix Nielsen, Emanuele Marconato, Andrea Dittadi et al.

NeurIPS 2025poster

When does compositional structure yield compositional generalization? A kernel theory.

Samuel Lippl, Kimberly Stachenfeld

ICLR 2025poster

When Does Curriculum Learning Help? A Theoretical Perspective

Raman Arora, Yunjuan Wang, Kaibo Zhang

NeurIPS 2025poster

When do GFlowNets learn the right distribution?

Tiago Silva, Rodrigo Alves, Eliezer de Souza da Silva et al.

ICLR 2025poster

When Do LLMs Help With Node Classification? A Comprehensive Analysis

Xixi Wu, Yifei Shen, Fangzhou Ge et al.

ICML 2025posterarXiv:2502.00829
9
citations

When Domain Generalization meets Generalized Category Discovery: An Adaptive Task-Arithmetic Driven Approach

Vaibhav Rathore, Shubhranil B, Saikat Dutta et al.

CVPR 2025poster

When do neural networks learn world models?

Tianren Zhang, Guanyu Chen, Feng Chen

ICML 2025posterarXiv:2502.09297

When Do Transformers Outperform Feedforward and Recurrent Networks? A Statistical Perspective

Alireza Mousavi-Hosseini, Clayton Sanford, Denny Wu et al.

NeurIPS 2025poster

When Dynamic Data Selection Meets Data Augmentation: Achieving Enhanced Training Acceleration

Suorong Yang, Peng Ye, Furao Shen et al.

ICML 2025poster

When Every Millisecond Counts: Real-Time Anomaly Detection via the Multimodal Asynchronous Hybrid Network

Dong Xiao, Guangyao Chen, Peixi Peng et al.

ICML 2025oralarXiv:2506.17457
3
citations

When GNNs meet symmetry in ILPs: an orbit-based feature augmentation approach

Qian Chen, Lei Li, Qian Li et al.

ICLR 2025posterarXiv:2501.14211
1
citations

When Graph Neural Networks Meet Dynamic Mode Decomposition

Dai Shi, Lequan Lin, Andi Han et al.

ICLR 2025oral

When Hypergraph Meets Heterophily: New Benchmark Datasets and Baseline

Ming Li, Yongchun Gu, Yi Wang et al.

AAAI 2025paper
27
citations

When Is Self-Gaze Helpful? Examining Uni- vs Bi-directional Gaze Visualization in Collocated AR Tasks

Daniel Alexander Delgado, Christopher J Bowers, Rodrigo Luis Calvo et al.

ISMAR 2025paper

When is Task Vector Provably Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers

Hongkang Li, Yihua Zhang, shuai ZHANG et al.

ICLR 2025poster

When Kernels Multiply, Clusters Unify: Fusing Embeddings with the Kronecker Product

Youqi WU, Jingwei Zhang, Farzan Farnia

NeurIPS 2025posterarXiv:2506.08645

When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning

Junwei Luo, Yingying Zhang, Xue Yang et al.

ICCV 2025posterarXiv:2503.07588
12
citations

When Less Language is More: Language-Reasoning Disentanglement Makes LLMs Better Multilingual Reasoners

Weixiang Zhao, Jiahe Guo, Yang Deng et al.

NeurIPS 2025spotlightarXiv:2505.15257
1
citations

When Lighting Deceives: Exposing Vision-Language Models' Illumination Vulnerability Through Illumination Transformation Attack

Hanqing Liu, Shouwei Ruan, Yao Huang et al.

ICCV 2025poster

When LLMs Play the Telephone Game: Cultural Attractors as Conceptual Tools to Evaluate LLMs in Multi-turn Settings

Jérémy Perez, Grgur Kovac, Corentin Léger et al.

ICLR 2025posterarXiv:2407.04503

When LLMs Recognize Your Space: Research on Experiences with Spatially Aware LLM Agents

Seungwoo Oh, Nakyoung An, Youngwug Cho et al.

ISMAR 2025paper

When Lower-Order Terms Dominate: Adaptive Expert Algorithms for Heavy-Tailed Losses

Antoine Moulin, Emmanuel Esposito, Dirk van der Hoeven

NeurIPS 2025poster

When majority rules, minority loses: bias amplification of gradient descent

François Bachoc, Jerome Bolte, Ryan Boustany et al.

NeurIPS 2025posterarXiv:2505.13122
1
citations

When Maximum Entropy Misleads Policy Optimization

Ruipeng Zhang, Ya-Chien Chang, Sicun Gao

ICML 2025posterarXiv:2506.05615
6
citations