"in-context learning" Papers

190 papers found • Page 4 of 4

How do Transformers Perform In-Context Autoregressive Learning ?

Michael Sander, Raja Giryes, Taiji Suzuki et al.

ICML 2024

How Transformers Learn Causal Structure with Gradient Descent

Eshaan Nichani, Alex Damian, Jason Lee

ICML 2024arXiv:2402.14735
102
citations

In-context Convergence of Transformers

Yu Huang, Yuan Cheng, Yingbin LIANG

ICML 2024arXiv:2310.05249
106
citations

In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

sili huang, Jifeng Hu, Hechang Chen et al.

ICML 2024arXiv:2405.20692
19
citations

In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik et al.

ICML 2024arXiv:2404.16795
27
citations

In-Context Language Learning: Architectures and Algorithms

Ekin Akyürek, Bailin Wang, Yoon Kim et al.

ICML 2024arXiv:2401.12973
83
citations

In-Context Learning Agents Are Asymmetric Belief Updaters

Johannes A. Schubert, Akshay Kumar Jagadish, Marcel Binz et al.

ICML 2024arXiv:2402.03969
16
citations

In-context Learning on Function Classes Unveiled for Transformers

Zhijie Wang, Bo Jiang, Shuai Li

ICML 2024

In-Context Matting

He Guo, Zixuan Ye, Zhiguo Cao et al.

CVPR 2024highlightarXiv:2403.15789
6
citations

In-Context Principle Learning from Mistakes

Tianjun Zhang, Aman Madaan, Luyu Gao et al.

ICML 2024arXiv:2402.05403
40
citations

In-Context Unlearning: Language Models as Few-Shot Unlearners

Martin Pawelczyk, Seth Neel, Himabindu Lakkaraju

ICML 2024

In-context Vectors: Making In Context Learning More Effective and Controllable Through Latent Space Steering

Sheng Liu, Haotian Ye, Lei Xing et al.

ICML 2024arXiv:2311.06668
224
citations

InstructGIE: Towards Generalizable Image Editing

Zichong Meng, Changdi Yang, Jun Liu et al.

ECCV 2024arXiv:2403.05018
13
citations

Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective

Fabian Falck, Ziyu Wang, Christopher Holmes

ICML 2024arXiv:2406.00793
42
citations

Language Agent Tree Search Unifies Reasoning, Acting, and Planning in Language Models

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman et al.

ICML 2024

Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning

Sungwon Han, Jinsung Yoon, Sercan Arik et al.

ICML 2024arXiv:2404.09491
66
citations

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Antoine Dedieu, Wolfgang Lehrach, Guangyao Zhou et al.

ICML 2024arXiv:2401.05946
6
citations

Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning

Jiachen Li, Qiaozi Gao, Michael Johnston et al.

ICML 2024arXiv:2310.09676
17
citations

Meta-Reinforcement Learning Robust to Distributional Shift Via Performing Lifelong In-Context Learning

TengYe Xu, Zihao Li, Qinyuan Ren

ICML 2024

Narrowing the Gap between Supervised and Unsupervised Sentence Representation Learning with Large Language Model

Mingxin Li, Richong Zhang, Zhijie Nie et al.

AAAI 2024paperarXiv:2309.06453
1
citations

One Prompt is not Enough: Automated Construction of a Mixture-of-Expert Prompts

Ruochen Wang, Sohyun An, Minhao Cheng et al.

ICML 2024arXiv:2407.00256
16
citations

PALM: Predicting Actions through Language Models

Sanghwan Kim, Daoji Huang, Yongqin Xian et al.

ECCV 2024arXiv:2311.17944
23
citations

PICLe: Eliciting Diverse Behaviors from Large Language Models with Persona In-Context Learning

Hyeong Kyu Choi, Sharon Li

ICML 2024oralarXiv:2405.02501
27
citations

Position: Do pretrained Transformers Learn In-Context by Gradient Descent?

Lingfeng Shen, Aayush Mishra, Daniel Khashabi

ICML 2024

Position: Understanding LLMs Requires More Than Statistical Generalization

Patrik Reizinger, Szilvia Ujváry, Anna Mészáros et al.

ICML 2024spotlightarXiv:2405.01964
22
citations

Position: Video as the New Language for Real-World Decision Making

Sherry Yang, Jacob C Walker, Jack Parker-Holder et al.

ICML 2024

Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

Zhihan Liu, Hao Hu, Shenao Zhang et al.

ICML 2024

Relational Programming with Foundational Models

Ziyang Li, Jiani Huang, Jason Liu et al.

AAAI 2024paperarXiv:2412.14515
11
citations

Rethinking and Improving Visual Prompt Selection for In-Context Learning Segmentation Framework

Wei Suo, Lanqing Lai, Mengyang Sun et al.

ECCV 2024

RoboMP$^2$: A Robotic Multimodal Perception-Planning Framework with Multimodal Large Language Models

Qi Lv, Hao Li, Xiang Deng et al.

ICML 2024arXiv:2404.04929
4
citations

Skill Set Optimization: Reinforcing Language Model Behavior via Transferable Skills

Kolby Nottingham, Bodhisattwa Prasad Majumder, Bhavana Dalvi et al.

ICML 2024arXiv:2402.03244
12
citations

Subgoal-based Demonstration Learning for Formal Theorem Proving

Xueliang Zhao, Wenda Li, Lingpeng Kong

ICML 2024arXiv:2305.16366
38
citations

Trainable Transformer in Transformer

Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia et al.

ICML 2024arXiv:2307.01189
14
citations

Transformers Implement Functional Gradient Descent to Learn Non-Linear Functions In Context

Xiang Cheng, Yuxin Chen, Suvrit Sra

ICML 2024arXiv:2312.06528
63
citations

Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape

Juno Kim, Taiji Suzuki

ICML 2024arXiv:2402.01258
38
citations

Two-stage LLM Fine-tuning with Less Specialization and More Generalization

Yihan Wang, Si Si, Daliang Li et al.

ICLR 2024arXiv:2211.00635
43
citations

Tyche: Stochastic In-Context Learning for Medical Image Segmentation

Marianne Rakic, Hallee Wong, Jose Javier Gonzalez Ortiz et al.

CVPR 2024highlightarXiv:2401.13650
24
citations

Unifying Image Processing as Visual Prompting Question Answering

Yihao Liu, Xiangyu Chen, Xianzheng Ma et al.

ICML 2024arXiv:2310.10513
31
citations

What needs to go right for an induction head? A mechanistic study of in-context learning circuits and their formation

Aaditya Singh, Ted Moskovitz, Feilx Hill et al.

ICML 2024spotlightarXiv:2404.07129
64
citations

Why Larger Language Models Do In-context Learning Differently?

Zhenmei Shi, Junyi Wei, Zhuoyan Xu et al.

ICML 2024arXiv:2405.19592
49
citations