"uncertainty quantification" Papers

62 papers found • Page 2 of 2

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla et al.

ICML 2024poster

Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise

Thomas Pouplin, Alan Jeffares, Nabeel Seedat et al.

ICML 2024poster

Second-Order Uncertainty Quantification: A Distance-Based Approach

Yusuf Sale, Viktor Bengs, Michele Caprio et al.

ICML 2024spotlight

T-Cal: An Optimal Test for the Calibration of Predictive Models

Donghwan Lee, Xinmeng Huang, Hamed Hassani et al.

ICML 2024poster

The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks

Ziquan Liu, Yufei Cui, Yan Yan et al.

ICML 2024poster

TIC-TAC: A Framework For Improved Covariance Estimation In Deep Heteroscedastic Regression

Megh Shukla, Mathieu Salzmann, Alexandre Alahi

ICML 2024poster

Towards Modeling Uncertainties of Self-explaining Neural Networks via Conformal Prediction

Wei Qian, Chenxu Zhao, Yangyi Li et al.

AAAI 2024paperarXiv:2401.01549
10
citations

Uncertainty Quantification in Heterogeneous Treatment Effect Estimation with Gaussian-Process-Based Partially Linear Model

Shunsuke Horii, Yoichi Chikahara

AAAI 2024paperarXiv:2312.10435
6
citations

Uncertainty Regularized Evidential Regression

Kai Ye, Tiejin Chen, Hua Wei et al.

AAAI 2024paperarXiv:2401.01484
11
citations

Using AI Uncertainty Quantification to Improve Human Decision-Making

Laura Marusich, Jonathan Bakdash, Yan Zhou et al.

ICML 2024oral

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024poster

Winner-takes-all learners are geometry-aware conditional density estimators

Victor Letzelter, David Perera, Cédric Rommel et al.

ICML 2024poster