NeurIPS 2025 "uncertainty quantification" Papers
17 papers found
Conformal Linguistic Calibration: Trading-off between Factuality and Specificity
Zhengping Jiang, Anqi Liu, Ben Van Durme
Conformal Prediction Beyond the Horizon: Distribution-Free Inference for Policy Evaluation
Feichen Gan, Lu Youcun, Yingying Zhang et al.
Contextual Thompson Sampling via Generation of Missing Data
Kelly W Zhang, Tianhui Cai, Hongseok Namkoong et al.
Fuz-RL: A Fuzzy-Guided Robust Framework for Safe Reinforcement Learning under Uncertainty
Xu Wan, Chao Yang, Cheng Yang et al.
Gaussian Approximation and Concentration of Constant Learning-Rate Stochastic Gradient Descent
Ziyang Wei, Jiaqi Li, Zhipeng Lou et al.
Infinite Neural Operators: Gaussian processes on functions
Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.
Knowledge Distillation of Uncertainty using Deep Latent Factor Model
Sehyun Park, Jongjin Lee, Yunseop Shin et al.
Neurosymbolic Diffusion Models
Emile van Krieken, Pasquale Minervini, Edoardo Maria Ponti et al.
Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation
Ting Wei, Biao Mei, Junliang Lyu et al.
Probabilistic Reasoning with LLMs for Privacy Risk Estimation
Jonathan Zheng, Alan Ritter, Sauvik Das et al.
ProDAG: Projected Variational Inference for Directed Acyclic Graphs
Ryan Thompson, Edwin Bonilla, Robert Kohn
Statistical Inference for Gradient Boosting Regression
Haimo Fang, Kevin Tan, Giles Hooker
THUNDER: Tile-level Histopathology image UNDERstanding benchmark
Pierre Marza, Leo Fillioux, Sofiène Boutaj et al.
Topology-Aware Conformal Prediction for Stream Networks
Jifan Zhang, Fangxin Wang, Zihe Song et al.
Torch-Uncertainty: Deep Learning Uncertainty Quantification
Adrien Lafage, Olivier Laurent, Firas Gabetni et al.
Uncertainty Estimation by Flexible Evidential Deep Learning
Taeseong Yoon, Heeyoung Kim
Uncertainty Quantification with the Empirical Neural Tangent Kernel
Joseph Wilson, Chris van der Heide, Liam Hodgkinson et al.