NEURIPS 2025 "sequence modeling" Papers

15 papers found

Achilles' Heel of Mamba: Essential difficulties of the Mamba architecture demonstrated by synthetic data

Tianyi Chen, Pengxiao Lin, Zhiwei Wang et al.

NEURIPS 2025spotlightarXiv:2509.17514

BlockScan: Detecting Anomalies in Blockchain Transactions

Jiahao Yu, Xian Wu, Hao Liu et al.

NEURIPS 2025posterarXiv:2410.04039
3
citations

DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products

Julien Siems, Timur Carstensen, Arber Zela et al.

NEURIPS 2025posterarXiv:2502.10297
23
citations

EDELINE: Enhancing Memory in Diffusion-based World Models via Linear-Time Sequence Modeling

Jia-Hua Lee, Bor-Jiun Lin, Wei-Fang Sun et al.

NEURIPS 2025spotlightarXiv:2502.00466
2
citations

Enhancing the Maximum Effective Window for Long-Term Time Series Forecasting

Jiahui Zhang, Zhengyang Zhou, Wenjie Du et al.

NEURIPS 2025poster

Evolutionary Reasoning Does Not Arise in Standard Usage of Protein Language Models

Yasha Ektefaie, Andrew Shen, Lavik Jain et al.

NEURIPS 2025poster

Hankel Singular Value Regularization for Highly Compressible State Space Models

Paul Schwerdtner, Jules Berman, Benjamin Peherstorfer

NEURIPS 2025posterarXiv:2510.22951
2
citations

Improving Bilinear RNN with Closed-loop Control

Jiaxi Hu, Yongqi Pan, Jusen Du et al.

NEURIPS 2025spotlightarXiv:2506.02475
3
citations

Neural Attention Search

Difan Deng, Marius Lindauer

NEURIPS 2025posterarXiv:2502.13251

Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling

Mónika Farsang, Radu Grosu

NEURIPS 2025posterarXiv:2505.21717
4
citations

SeerAttention: Self-distilled Attention Gating for Efficient Long-context Prefilling

Yizhao Gao, Zhichen Zeng, DaYou Du et al.

NEURIPS 2025poster

Structured Linear CDEs: Maximally Expressive and Parallel-in-Time Sequence Models

Benjamin Walker, Lingyi Yang, Nicola Muca Cirone et al.

NEURIPS 2025spotlightarXiv:2505.17761
6
citations

Tensor Product Attention Is All You Need

Yifan Zhang, Yifeng Liu, Huizhuo Yuan et al.

NEURIPS 2025spotlightarXiv:2501.06425
33
citations

What One Cannot, Two Can: Two-Layer Transformers Provably Represent Induction Heads on Any-Order Markov Chains

Chanakya Ekbote, Ashok Vardhan Makkuva, Marco Bondaschi et al.

NEURIPS 2025spotlightarXiv:2508.07208

ZeroS: Zero‑Sum Linear Attention for Efficient Transformers

Jiecheng Lu, Xu Han, Yan Sun et al.

NEURIPS 2025spotlight