NEURIPS 2025 "reasoning benchmarks" Papers

10 papers found

Accelerated Sampling from Masked Diffusion Models via Entropy Bounded Unmasking

Heli Ben-Hamu, Itai Gat, Daniel Severo et al.

NEURIPS 2025posterarXiv:2505.24857
40
citations

Activation Control for Efficiently Eliciting Long Chain-of-thought Ability of Language Models

Zekai Zhao, Qi Liu, Kun Zhou et al.

NEURIPS 2025spotlightarXiv:2505.17697
4
citations

HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts

Neil He, Rishabh Anand, Hiren Madhu et al.

NEURIPS 2025posterarXiv:2505.24722
8
citations

KLASS: KL-Guided Fast Inference in Masked Diffusion Models

Seo Hyun Kim, Sunwoo Hong, Hojung Jung et al.

NEURIPS 2025spotlightarXiv:2511.05664

Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach

Jonas Geiping, Sean McLeish, Neel Jain et al.

NEURIPS 2025spotlightarXiv:2502.05171
138
citations

SCOUT: Teaching Pre-trained Language Models to Enhance Reasoning via Flow Chain-of-Thought

Guanghao Li, Wenhao Jiang, Mingfeng Chen et al.

NEURIPS 2025posterarXiv:2505.24181
2
citations

SeRL: Self-play Reinforcement Learning for Large Language Models with Limited Data

Wenkai Fang, Shunyu Liu, Yang Zhou et al.

NEURIPS 2025posterarXiv:2505.20347
19
citations

SpecReason: Fast and Accurate Inference-Time Compute via Speculative Reasoning

Rui Pan, Yinwei Dai, Zhihao Zhang et al.

NEURIPS 2025posterarXiv:2504.07891
35
citations

SPMDM: Enhancing Masked Diffusion Models through Simplifing Sampling Path

Yichen Zhu, Weiyu Chen, James Kwok et al.

NEURIPS 2025poster

SwS: Self-aware Weakness-driven Problem Synthesis in Reinforcement Learning for LLM Reasoning

Xiao Liang, Zhong-Zhi Li, Yeyun Gong et al.

NEURIPS 2025posterarXiv:2506.08989
14
citations