ICML 2024 "transfer learning" Papers

21 papers found

${\rm E}(3)$-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning

Dingyang Chen, Qi Zhang

ICML 2024posterarXiv:2308.11842

Bridging Data Gaps in Diffusion Models with Adversarial Noise-Based Transfer Learning

Xiyu Wang, Baijiong Lin, Daochang Liu et al.

ICML 2024spotlight

CARTE: Pretraining and Transfer for Tabular Learning

Myung Jun Kim, Leo Grinsztajn, Gael Varoquaux

ICML 2024posterarXiv:2402.16785

DNA-SE: Towards Deep Neural-Nets Assisted Semiparametric Estimation

Qinshuo Liu, Zixin Wang, Xi'an Li et al.

ICML 2024posterarXiv:2408.02045

Encodings for Prediction-based Neural Architecture Search

Yash Akhauri, Mohamed Abdelfattah

ICML 2024posterarXiv:2403.02484

Feature Reuse and Scaling: Understanding Transfer Learning with Protein Language Models

Francesca-Zhoufan Li, Ava Amini, Yisong Yue et al.

ICML 2024poster

Fine-tuning Reinforcement Learning Models is Secretly a Forgetting Mitigation Problem

Maciej Wołczyk, Bartłomiej Cupiał, Mateusz Ostaszewski et al.

ICML 2024spotlightarXiv:2402.02868

Forget Sharpness: Perturbed Forgetting of Model Biases Within SAM Dynamics

Ankit Vani, Frederick Tung, Gabriel Oliveira et al.

ICML 2024posterarXiv:2406.06700

Graph Positional and Structural Encoder

Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné et al.

ICML 2024posterarXiv:2307.07107

Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples

Thomas T. Zhang, Bruce Lee, Ingvar Ziemann et al.

ICML 2024posterarXiv:2410.11227

Is Inverse Reinforcement Learning Harder than Standard Reinforcement Learning? A Theoretical Perspective

Lei Zhao, Mengdi Wang, Yu Bai

ICML 2024posterarXiv:2312.00054

Learning from Memory: Non-Parametric Memory Augmented Self-Supervised Learning of Visual Features

Thalles Silva, Helio Pedrini, Adín Ramírez Rivera

ICML 2024posterarXiv:2407.17486

Matrix Information Theory for Self-Supervised Learning

Yifan Zhang, Zhiquan Tan, Jingqin Yang et al.

ICML 2024posterarXiv:2305.17326

MF-CLR: Multi-Frequency Contrastive Learning Representation for Time Series

Jufang Duan, Wei Zheng, Yangzhou Du et al.

ICML 2024poster

Minimum-Norm Interpolation Under Covariate Shift

Neil Mallinar, Austin Zane, Spencer Frei et al.

ICML 2024posterarXiv:2404.00522
12
citations

On Hypothesis Transfer Learning of Functional Linear Models

Haotian Lin, Matthew Reimherr

ICML 2024posterarXiv:2206.04277

Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining

Florian Tramer, Gautam Kamath, Nicholas Carlini

ICML 2024poster

Position: Will we run out of data? Limits of LLM scaling based on human-generated data

Pablo Villalobos, Anson Ho, Jaime Sevilla et al.

ICML 2024poster

Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers

Md Shamim Hussain, Mohammed Zaki, Dharmashankar Subramanian

ICML 2024posterarXiv:2402.04538

Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts

Shengzhuang Chen, Jihoon Tack, Yunqiao Yang et al.

ICML 2024posterarXiv:2403.08477

When is Transfer Learning Possible?

My Phan, Kianté Brantley, Stephanie Milani et al.

ICML 2024poster