ICML Poster "partial differential equations" Papers

22 papers found

$\bf{\Phi}_\textrm{Flow}$: Differentiable Simulations for PyTorch, TensorFlow and Jax

Philipp Holl, Nils Thuerey

ICML 2024poster

Accelerating PDE Data Generation via Differential Operator Action in Solution Space

huanshuo dong, Hong Wang, Haoyang Liu et al.

ICML 2024posterarXiv:2402.05957

A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts

Huy Nguyen, Pedram Akbarian, TrungTin Nguyen et al.

ICML 2024posterarXiv:2310.14188

Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains

Levi Lingsch, Mike Yan Michelis, Emmanuel de Bézenac et al.

ICML 2024posterarXiv:2305.19663

Challenges in Training PINNs: A Loss Landscape Perspective

Pratik Rathore, Weimu Lei, Zachary Frangella et al.

ICML 2024posterarXiv:2402.01868

Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss

Yahong Yang, Juncai He

ICML 2024posterarXiv:2402.00152

DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

Zhongkai Hao, Chang Su, LIU SONGMING et al.

ICML 2024posterarXiv:2403.03542

Graph Neural PDE Solvers with Conservation and Similarity-Equivariance

Masanobu Horie, NAOTO MITSUME

ICML 2024posterarXiv:2405.16183

HAMLET: Graph Transformer Neural Operator for Partial Differential Equations

Andrey Bryutkin, Jiahao Huang, Zhongying Deng et al.

ICML 2024posterarXiv:2402.03541

Liouville Flow Importance Sampler

Yifeng Tian, Nishant Panda, Yen Ting Lin

ICML 2024posterarXiv:2405.06672

Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling

Brooks(Ruijia) Niu, Dongxia Wu, Kai Kim et al.

ICML 2024posterarXiv:2402.18846

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving

Alexander Rudikov, Fanaskov Vladimir, Ekaterina Muravleva et al.

ICML 2024posterarXiv:2402.05598

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev et al.

ICML 2024posterarXiv:2402.16845

Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields

Tom Fischer, Pascal Peter, Joachim Weickert et al.

ICML 2024posterarXiv:2405.14599

Physics and Lie symmetry informed Gaussian processes

David Dalton, Dirk Husmeier, Hao Gao

ICML 2024poster

Physics-Informed Neural Network Policy Iteration: Algorithms, Convergence, and Verification

Yiming Meng, Ruikun Zhou, Amartya Mukherjee et al.

ICML 2024posterarXiv:2402.10119

Positional Knowledge is All You Need: Position-induced Transformer (PiT) for Operator Learning

Junfeng CHEN, Kailiang Wu

ICML 2024posterarXiv:2405.09285

Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations

Ze Cheng, Zhongkai Hao, Wang Xiaoqiang et al.

ICML 2024posterarXiv:2405.17509

Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation

Sergei Shumilin, Alexander Ryabov, Nikolay Yavich et al.

ICML 2024posterarXiv:2507.18297

TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision

Zhuo Chen, Jacob McCarran, Esteban Vizcaino et al.

ICML 2024posterarXiv:2404.10771

Towards General Neural Surrogate Solvers with Specialized Neural Accelerators

Chenkai Mao, Robert Lupoiu, Tianxiang Dai et al.

ICML 2024posterarXiv:2405.02351

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024poster