ICLR 2025 "vision-language models" Papers

14 papers found

$\mathbb{X}$-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs

Vlad Sobal, Mark Ibrahim, Randall Balestriero et al.

ICLR 2025posterarXiv:2407.18134
12
citations

Aligning Visual Contrastive learning models via Preference Optimization

Amirabbas Afzali, Borna khodabandeh, Ali Rasekh et al.

ICLR 2025posterarXiv:2411.08923
3
citations

CogCoM: A Visual Language Model with Chain-of-Manipulations Reasoning

Ji Qi, Ming Ding, Weihan Wang et al.

ICLR 2025posterarXiv:2402.04236
33
citations

Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion

Marco Mistretta, Alberto Baldrati, Lorenzo Agnolucci et al.

ICLR 2025posterarXiv:2502.04263
15
citations

DAMO: Decoding by Accumulating Activations Momentum for Mitigating Hallucinations in Vision-Language Models

Kaishen Wang, Hengrui Gu, Meijun Gao et al.

ICLR 2025poster
7
citations

Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference under Ambiguities

Zheyuan Zhang, Fengyuan Hu, Jayjun Lee et al.

ICLR 2025posterarXiv:2410.17385
40
citations

Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data

Yucheng Shi, Quanzheng Li, Jin Sun et al.

ICLR 2025posterarXiv:2502.14044
6
citations

MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models

Ziyu Liu, Yuhang Zang, Xiaoyi Dong et al.

ICLR 2025posterarXiv:2410.17637
19
citations

MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models

Wenbo Hu, Jia-Chen Gu, Zi-Yi Dou et al.

ICLR 2025posterarXiv:2410.08182
29
citations

RA-TTA: Retrieval-Augmented Test-Time Adaptation for Vision-Language Models

Youngjun Lee, Doyoung Kim, Junhyeok Kang et al.

ICLR 2025poster
5
citations

Reflexive Guidance: Improving OoDD in Vision-Language Models via Self-Guided Image-Adaptive Concept Generation

Jihyo Kim, Seulbi Lee, Sangheum Hwang

ICLR 2025posterarXiv:2410.14975
3
citations

Semantic Temporal Abstraction via Vision-Language Model Guidance for Efficient Reinforcement Learning

Tian-Shuo Liu, Xu-Hui Liu, Ruifeng Chen et al.

ICLR 2025oral

Teaching Human Behavior Improves Content Understanding Abilities Of VLMs

SOMESH SINGH, Harini S I, Yaman Singla et al.

ICLR 2025poster
2
citations

VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents

Shi Yu, Chaoyue Tang, Bokai Xu et al.

ICLR 2025posterarXiv:2410.10594
121
citations