CVPR 2025 "few-shot learning" Papers

14 papers found

3D Prior Is All You Need: Cross-Task Few-shot 2D Gaze Estimation

Yihua Cheng, Hengfei Wang, Zhongqun Zhang et al.

CVPR 2025posterarXiv:2502.04074
1
citations

A Flag Decomposition for Hierarchical Datasets

Nathan Mankovich, Ignacio Santamaria, Gustau Camps-Valls et al.

CVPR 2025posterarXiv:2502.07782
3
citations

Attribute-formed Class-specific Concept Space: Endowing Language Bottleneck Model with Better Interpretability and Scalability

Jianyang Zhang, Qianli Luo, Guowu Yang et al.

CVPR 2025posterarXiv:2503.20301

Concept Replacer: Replacing Sensitive Concepts in Diffusion Models via Precision Localization

lingyun zhang, Yu Xie, Yanwei Fu et al.

CVPR 2025posterarXiv:2412.01244
5
citations

DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection

Jaewoo Song, Daemin Park, Kanghyun Baek et al.

CVPR 2025highlightarXiv:2503.13985
6
citations

FFaceNeRF: Few-shot Face Editing in Neural Radiance Fields

Kwan Yun, Chaelin Kim, Hangyeul Shin et al.

CVPR 2025posterarXiv:2503.17095
1
citations

Generalized Few-shot 3D Point Cloud Segmentation with Vision-Language Model

Zhaochong An, Guolei Sun, Yun Liu et al.

CVPR 2025posterarXiv:2503.16282
10
citations

Logits DeConfusion with CLIP for Few-Shot Learning

Shuo Li, Fang Liu, Zehua Hao et al.

CVPR 2025posterarXiv:2504.12104
6
citations

Provoking Multi-modal Few-Shot LVLM via Exploration-Exploitation In-Context Learning

Cheng Chen, Yunpeng Zhai, Yifan Zhao et al.

CVPR 2025posterarXiv:2506.09473
1
citations

Self-Evolving Visual Concept Library using Vision-Language Critics

Atharva Sehgal, Patrick Yuan, Ziniu Hu et al.

CVPR 2025posterarXiv:2504.00185
2
citations

Test-Time Visual In-Context Tuning

Jiahao Xie, Alessio Tonioni, Nathalie Rauschmayr et al.

CVPR 2025posterarXiv:2503.21777
4
citations

The Devil is in Low-Level Features for Cross-Domain Few-Shot Segmentation

Yuhan Liu, Yixiong Zou, Yuhua Li et al.

CVPR 2025posterarXiv:2503.21150

Tripartite Weight-Space Ensemble for Few-Shot Class-Incremental Learning

Juntae Lee, Munawar Hayat, Sungrack Yun

CVPR 2025posterarXiv:2506.15720
2
citations

UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection

Zhaopeng Gu, Bingke Zhu, Guibo Zhu et al.

CVPR 2025posterarXiv:2412.03342
22
citations