SparseCraft: Few-Shot Neural Reconstruction through Stereopsis Guided Geometric Linearization

19citations
PDF
19
Citations
#391
in ECCV 2024
of 2387 papers
3
Authors
2
Data Points

Abstract

We present a novel approach for recovering 3D shape and view dependent appearance from a few colored images, enabling efficient 3D reconstruction and novel view synthesis. Our method learns an implicit neural representation in the form of a Signed Distance Function (SDF) and a radiance field. The model is trained progressively through ray tracing enabled volumetric rendering, and regularized with learning-free multi-view stereo (MVS) cues. Key to our contribution is a novel implicit neural shape function learning strategy that encourages our SDF field to be as linear as possible near the level-set, hence robustifying the training against noise emanating from the supervision and regularization signals. Without using any pretrained priors, our method, called SparseCraft, achieves state-of-the-art performances both in novel-view synthesis and reconstruction from sparse views in standard benchmarks, while requiring less than 10 minutes for training.

Citation History

Jan 26, 2026
19
Jan 26, 2026
19