Tru-POMDP: Task Planning Under Uncertainty via Tree of Hypotheses and Open-Ended POMDPs

0
Citations
#2219
in NeurIPS 2025
of 5858 papers
6
Authors
4
Data Points

Abstract

Task planning under uncertainty is essential for home-service robots operating in the real world. Tasks involve ambiguous human instructions, hidden or unknown object locations, and open-vocabulary object types, leading to significant open-ended uncertainty and a boundlessly large planning space. To address these challenges, we propose Tru-POMDP, a planner that combines structured belief generation using Large Language Models (LLMs) with principled POMDP planning. Tru-POMDP introduces a hierarchical Tree of Hypotheses (TOH), which systematically queries an LLM to construct high-quality particle beliefs over possible world states and human goals. We further formulate an open-ended POMDP model that enables rigorous Bayesian belief tracking and efficient belief-space planning over these LLM-generated hypotheses. Experiments on complex object rearrangement tasks across diverse kitchen environments show that Tru-POMDP significantly outperforms state-of-the-art LLM-based and LLM-tree-search hybrid planners, achieving higher success rates with significantly better plans, stronger robustness to ambiguity and occlusion, and greater planning efficiency.

Citation History

Jan 25, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Jan 30, 2026
0