Advancing Semantic Future Prediction through Multimodal Visual Sequence Transformers

5
Citations
4
Authors
4
Data Points

Abstract

Semantic future prediction is important for autonomous systems navigating dynamic environments. This paper introduces FUTURIST, a method for multimodal future semantic prediction that uses a unified and efficient visual sequence transformer architecture. Our approach incorporates a multimodal masked visual modeling objective and a novel masking mechanism designed for multimodal training. This allows the model to effectively integrate visible information from various modalities, improving prediction accuracy. Additionally, we propose a VAE-free hierarchical tokenization process, which reduces computational complexity, streamlines the training pipeline, and enables end-to-end training with high-resolution, multimodal inputs. We validate FUTURIST on the Cityscapes dataset, demonstrating state-of-the-art performance in future semantic segmentation for both short- and mid-term forecasting. Project page and code at https://futurist-cvpr2025.github.io/ .

Citation History

Jan 25, 2026
0
Jan 27, 2026
5+5
Jan 27, 2026
5
Jan 31, 2026
5