D3QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection

1citations
Project
1
Citations
#708
in ICCV 2025
of 2701 papers
8
Authors
4
Data Points

Abstract

The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D$^3$QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D$^3$QE across different AR models, with robustness to real-world perturbations. Code is available at \href{https://github.com/Zhangyr2022/D3QE}{https://github.com/Zhangyr2022/D3QE}.

Citation History

Jan 25, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Jan 31, 2026
1+1