SAGI: Semantically Aligned and Uncertainty Guided AI Image Inpainting

2
Citations
#673
in ICCV 2025
of 2701 papers
4
Authors
4
Data Points

Abstract

Recent advancements in generative AI have made text-guided image inpainting - adding, removing, or altering image regions using textual prompts - widely accessible. However, generating semantically correct photorealistic imagery, typically requires carefully-crafted prompts and iterative refinement by evaluating the realism of the generated content - tasks commonly performed by humans. To automate the generative process, we propose Semantically Aligned and Uncertainty Guided AI Image Inpainting (SAGI), a model-agnostic pipeline, to sample prompts from a distribution that closely aligns with human perception and to evaluate the generated content and discard instances that deviate from such a distribution, which we approximate using pretrained large language models and vision-language models. By applying this pipeline on multiple state-of-the-art inpainting models, we create the SAGI Dataset (SAGI-D), currently the largest and most diverse dataset of AI-generated inpaintings, comprising over 95k inpainted images and a human-evaluated subset. Our experiments show that semantic alignment significantly improves image quality and aesthetics, while uncertainty guidance effectively identifies realistic manipulations - human ability to distinguish inpainted images from real ones drops from 74% to 35% in terms of accuracy, after applying our pipeline. Moreover, using SAGI-D for training several image forensic approaches increases in-domain detection performance on average by 37.4% and out-of-domain generalization by 26.1% in terms of IoU, also demonstrating its utility in countering malicious exploitation of generative AI. Code and dataset are available at https://mever-team.github.io/SAGI/

Citation History

Jan 26, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Feb 1, 2026
2+2