Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

0citations
PDF
0
Citations
#10
in ICML 2024
of 2635 papers
2
Authors
1
Data Points

Abstract

The widespread use of artificial intelligence requires finding energy-efficient paradigms for the field. We propose to reduce the energy consumption of Gaussian process regression using low-precision floating-point representations. We explore how low-precision representations impact the results of Gaussian process regression and how data set properties, implementation approach, model performance, and energy consumption interact. Our findings show that a well-conditioned kernel matrix allows reducing the energy consumption by up to 89.01% for 98.08% of arithmetic operations with little to no impact on model performance. Our findings are relevant whenever one needs to invert a symmetric full-rank matrix.

Citation History

Jan 28, 2026
0