How Smooth Is Attention?

0citations
PDF
0
Citations
#10
in ICML 2024
of 2635 papers
3
Authors
1
Data Points

Abstract

Self-attention and masked self-attention are at the heart of Transformers' outstanding success. Still, our mathematical understanding of attention, in particular of its Lipschitz properties — which are key when it comes to analyzing robustness and expressive power — is incomplete. We provide a detailed study of the Lipschitz constant of self-attention in several practical scenarios, discussing the impact of the sequence length $n$ and layer normalization on the local Lipschitz constant of both unmasked and masked self-attention. In particular, we show that for inputs of length $n$ in any compact set, the Lipschitz constant of self-attention is bounded by $\sqrt{n}$ up to a constant factor and that this bound is tight for reasonable sequence lengths. When the sequence length $n$ is too large for the previous bound to be tight, which we refer to as the mean-field regime, we provide an upper bound and a matching lower bound which are independent of $n$. Our mean-field framework for masked self-attention is novel and of independent interest. Our experiments on pretrained and randomly initialized BERT and GPT-2 support our theoretical findings.

Citation History

Jan 28, 2026
0