Adaptively Perturbed Mirror Descent for Learning in Games

0citations
PDFProject
0
Citations
#10
in ICML 2024
of 2635 papers
4
Authors
1
Data Points

Abstract

This paper proposes a payoff perturbation technique for the Mirror Descent (MD) algorithm in games where the gradient of the payoff functions is monotone in the strategy profile space, potentially containing additive noise. The optimistic family of learning algorithms, exemplified by optimistic MD, successfully achieveslast-iterateconvergence in scenarios devoid of noise, leading the dynamics to a Nash equilibrium. A recent re-emerging trend underscores the promise of the perturbation approach, where payoff functions are perturbed based on the distance from an anchoring, orslingshot, strategy. In response, we proposeAdaptively Perturbed MD(APMD), which adjusts the magnitude of the perturbation by repeatedly updating the slingshot strategy at a predefined interval. This innovation empowers us to find a Nash equilibrium of the underlying game with guaranteed rates. Empirical demonstrations affirm that our algorithm exhibits significantly accelerated convergence.

Citation History

Jan 28, 2026
0