Unifying Specialized Visual Encoders for Video Language Models

0citations
0
Citations
#766
in ICML 2025
of 3340 papers
6
Authors
1
Data Points

Abstract

Recent advances in vision backbones have yielded powerful and diverse visual and video encoders. Yet, current Video Large Language Models encode visual inputs using an encoder from a single backbone family, limiting the amount and type of visual information they can process. We propose MERV, a Multi-Encoder Video Representation, which utilizes multiple encoders for a comprehensive video representation. To optimize heterogeneous features from a broad spectrum of encoders and ensure efficient and coherent feature integration, MERV first aligns encoder features spatio-temporally, then projects them into a unified structure, and finally fuses them through cross-attention. Under fair comparison, MERV achieves up to 4.62% higher accuracy than its base model, while introducing minimal extra parameters and training faster than equivalent single-encoder methods after parallelizing visual processing. Qualitative analysis shows MERV successfully captures and integrates domain knowledge from each encoder, opening new possibilities for scaling enhanced video understanding.

Citation History

Jan 28, 2026
0