BackSlash: Rate Constrained Optimized Training of Large Language Models

0citations
0
Citations
#766
in ICML 2025
of 3340 papers
3
Authors
1
Data Points

Abstract

The rapid advancement of large-language models (LLMs) has driven extensive research into parameter compression after training has been completed, yet compression during the training phase remains largely unexplored. In this work, we introduce Rate-Constrained Training (BackSlash), a novel training-time compression approach based on rate-distortion optimization (RDO). BackSlash enables a flexible trade-off between model accuracy and complexity, significantly reducing parameter redundancy while preserving performance. Experiments in various architectures and tasks demonstrate that BackSlash can reduce memory usage by 60\% - 90\% without accuracy loss and provides significant compression gain compared to compression after training. Moreover, BackSlash proves to be highly versatile: it enhances generalization with small Lagrange multipliers, improves model robustness to pruning (maintaining accuracy even at 80\% pruning rates), and enables network simplification for accelerated inference on edge devices.

Citation History

Jan 28, 2026
0