A First-order Generative Bilevel Optimization Framework for Diffusion Models

0citations
0
Citations
#766
in ICML 2025
of 3340 papers
7
Authors
1
Data Points

Abstract

Diffusion models, which iteratively denoise data samples to synthesize high-quality outputs, have achieved empirical success across domains. However, optimizing these models for downstream tasks often involves nested bilevel structures, such as tuning hyperparameters for fine-tuning tasks or noise schedules in training dynamics, where traditional bilevel methods fail due to the infinite-dimensional probability space and prohibitive sampling costs. We formalize this challenge as a generative bilevel optimization problem and address two key scenarios: (1) fine-tuning pre-trained models via an inference-only lower-level solver paired with a sample-efficient gradient estimator for the upper level, and (2) training diffusion model from scratch with noise schedule optimization by reparameterizing the lower-level problem and designing a computationally tractable gradient estimator. Our first-order bilevel framework overcomes the incompatibility of conventional bilevel methods with diffusion processes, offering theoretical grounding and computational practicality. Experiments demonstrate that our method outperforms existing fine-tuning and hyperparameter search baselines.

Citation History

Jan 28, 2026
0