GPEN: Global Position Encoding Network for Enhanced Subgraph Representation Learning

0citations
0
Citations
#766
in ICML 2025
of 3340 papers
5
Authors
1
Data Points

Abstract

Subgraph representation learning has attracted growing interest due to its wide applications in various domains. However, existing methods primarily focus on local neighborhood structures while overlooking the significant impact of global structural information, in particular the influence of multi-hop neighbors beyond immediate neighborhoods. This presents two key challenges: how to effectively capture the structural relationships between distant nodes, and how to prevent excessive aggregation of global structural information from weakening the discriminative ability of subgraph representations.To address these challenges, we propose GPEN (Global Position Encoding Network). GPEN leverages a hierarchical tree structure to encode each node's global position based on its path distance to the root node, enabling a systematic way to capture relationships between distant nodes. Furthermore, we introduce a boundary-aware convolution module that selectively integrates global structural information while maintaining the unique structural patterns of each subgraph. Extensive experiments on eight public datasets identify that GPEN significantly outperforms state-of-the-art methods in subgraph representation learning.

Citation History

Jan 28, 2026
0