Analytic DAG Constraints for Differentiable DAG Learning

5citations
5
Citations
#1100
in ICLR 2025
of 3827 papers
9
Authors
1
Data Points

Abstract

Recovering the underlying Directed Acyclic Graph (DAG) structures from observational data presents a formidable challenge, partly due to the combinatorial nature of the DAG-constrained optimization problem. Recently, researchers have identified gradient vanishing as one of the primary obstacles in differentiable DAG learning and have proposed several DAG constraints to mitigate this issue. By developing the necessary theory to establish a connection between analytic functions and DAG constraints, we demonstrate that analytic functions from the set $\\{f(x) = c_0 + \\sum_{i=1}^{\infty}c_ix^i | \\forall i > 0, c_i > 0; r = \\lim_{i\\rightarrow \\infty}c_{i}/c_{i+1} > 0\\}$ can be employed to formulate effective DAG constraints. Furthermore, we establish that this set of functions is closed under several functional operators, including differentiation, summation, and multiplication. Consequently, these operators can be leveraged to create novel DAG constraints based on existing ones. Using these properties, we design a series of DAG constraints and develop an efficient algorithm to evaluate them. Experiments in various settings demonstrate that our DAG constraints outperform previous state-of-the-art comparators. Our implementation is available at https://github.com/zzhang1987/AnalyticDAGLearning.

Citation History

Jan 24, 2026
5