IterGen: Iterative Semantic-aware Structured LLM Generation with Backtracking

10
citations
#2529
in ICLR 2025
of 3827 papers
5
Top Authors
5
Data Points

Abstract

Large Language Models (LLMs) are widely used for tasks such as natural language and code generation, but their outputs often suffer from issues like hallucination, toxicity, and incorrect results. Current libraries for structured LLM generation rely on left-to-right decoding without support for backtracking, limiting the ability to correct or refine outputs mid-generation. To address this, we introduce IterGen, a user-friendly library for iterative, grammar-guided LLM generation that enables users to move both forward and backward within the generated output based on grammar symbols. By leveraging a symbol-to-position mapping and maintaining the key-value (KV) cache state, IterGen ensures efficient and structured generation while allowing for corrections during the process. We demonstrate IterGen's effectiveness in two important applications: reducing privacy leakage in LLM outputs, improving the accuracy of LLM-generated SQL and Vega-Lite queries.Our code and additional resources are available at https://structuredllm.com.

Citation History

Jan 25, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Jan 28, 2026
0
Feb 13, 2026
10+10