Encryption-Friendly LLM Architecture

18citations
Project
18
Citations
#467
in ICLR 2025
of 3827 papers
7
Authors
2
Data Points

Abstract

Large language models (LLMs) offer personalized responses based on user interactions, but this use case raises serious privacy concerns. Homomorphic encryption (HE) is a cryptographic protocol supporting arithmetic computations in encrypted states and provides a potential solution for privacy-preserving machine learning (PPML). However, the computational intensity of transformers poses challenges for applying HE to LLMs. In this work, we propose a modified HE-friendly transformer architecture with an emphasis on inference following personalized (private) fine-tuning. Utilizing LoRA fine-tuning and Gaussian kernels, we achieve significant computational speedups---6.94$\times$ for fine-tuning and 2.3$\times$ for inference---while maintaining performance comparable to plaintext models. Our findings provide a viable proof of concept for offering privacy-preserving LLM services in areas where data protection is crucial. Our code is available on GitHub.

Citation History

Jan 25, 2026
18
Jan 26, 2026
18