ComLoRA: A Competitive Learning Approach for Enhancing LoRA

1citations
Project
1
Citations
#2207
in ICLR 2025
of 3827 papers
4
Authors
1
Data Points

Abstract

We propose a Competitive Low-Rank Adaptation (ComLoRA) framework to address the limitations of the LoRA method, which either lacks capacity with a single rank-$r$ LoRA or risks inefficiency and overfitting with a larger rank-$Kr$ LoRA, where $K$ is an integer larger than 1. The proposed ComLoRA method initializes $K$ distinct LoRA components, each with rank $r$, and allows them to compete during training. This competition drives each LoRA component to outperform the others, improving overall model performance. The best-performing LoRA is selected based on validation metrics, ensuring that the final model outperforms a single rank-$r$ LoRA and matches the effectiveness of a larger rank-$Kr$ LoRA, all while avoiding extra computational overhead during inference. To the best of our knowledge, this is the first work to introduce and explore competitive learning in the context of LoRA optimization. The ComLoRA's code is available at https://github.com/hqsiswiliam/comlora.

Citation History

Jan 25, 2026
1