Understanding Virtual Nodes: Oversquashing and Node Heterogeneity

11citations
11
Citations
#733
in ICLR 2025
of 3827 papers
4
Authors
3
Data Points

Abstract

While message passing neural networks (MPNNs) have convincing success in a range of applications, they exhibit limitations such as the oversquashing problem and their inability to capture long-range interactions. Augmenting MPNNs with a virtual node (VN) removes the locality constraint of the layer aggregation and has been found to improve performance on a range of benchmarks. We provide a comprehensive theoretical analysis of the role of VNs and benefits thereof, through the lenses of oversquashing and sensitivity analysis. First, we characterize, precisely, how the improvement afforded by VNs on the mixing abilities of the network and hence in mitigating oversquashing, depends on the underlying topology. We then highlight that, unlike Graph-Transformers (GTs), classical instantiations of the VN are often constrained to assign uniform importance to different nodes. Consequently, we propose a variant of VN with the same computational complexity, which can have different sensitivity to nodes based on the graph structure. We show that this is an extremely effective and computationally efficient baseline for graph-level tasks.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
11+11