Random-Set Neural Networks

9citations
Project
9
Citations
5
Authors
1
Data Points

Abstract

Machine learning is increasingly deployed in safety-critical domains where erroneous predictions may lead to potentially catastrophic consequences, highlighting the need for learning systems to be aware of how confident they are in their own predictions: in other words, 'to know when they do not know’. In this paper, we propose a novel Random-Set Neural Network (RS-NN) approach to classification which predictsbelief functions(rather than classical probability vectors) over the class list using the mathematics ofrandom sets, i.e., distributions over the collection ofsetsof classes. RS-NN encodes the 'epistemic' uncertainty induced by training sets that are insufficiently representative or limited in size via the size of the convex set of probability vectors associated with a predicted belief function. Our approach outperforms state-of-the-art Bayesian and Ensemble methods in terms of accuracy, uncertainty estimation and out-of-distribution (OoD) detection on multiple benchmarks (CIFAR-10 vs SVHN/Intel-Image, MNIST vs FMNIST/KMNIST, ImageNet vs ImageNet-O). RS-NN also scales up effectively to large-scale architectures (e.g. WideResNet-28-10, VGG16, Inception V3, EfficientNetB2 and ViT-Base-16),exhibits remarkable robustness to adversarial attacks and can provide statistical guarantees in a conformal learning setting.

Citation History

Jan 25, 2026
9