DeblurDiff: Real-Word Image Deblurring with Generative Diffusion Models

5citations
5
Citations
#400
in NeurIPS 2025
of 5858 papers
8
Authors
4
Data Points

Abstract

Diffusion models have achieved significant progress in image generation and the pre-trained Stable Diffusion (SD) models are helpful for image deblurring by providing clear image priors. However, directly using a blurry image or a pre-deblurred one as a conditional control for SD will either hinder accurate structure extraction or make the results overly dependent on the deblurring network. In this work, we propose a Latent Kernel Prediction Network (LKPN) to achieve robust real-world image deblurring. Specifically, we co-train the LKPN in the latent space with conditional diffusion. The LKPN learns a spatially variant kernel to guide the restoration of sharp images in the latent space. By applying element-wise adaptive convolution (EAC), the learned kernel is utilized to adaptively process the blurry feature, effectively preserving the information of the blurry input. This process thereby more effectively guides the generative process of SD, enhancing both the deblurring efficacy and the quality of detail reconstruction. Moreover, the results at each diffusion step are utilized to iteratively estimate the kernels in LKPN to better restore the sharp latent by EAC in the subsequent step. This iterative refinement enhances the accuracy and robustness of the deblurring process. Extensive experimental results demonstrate that the proposed method outperforms state-of-the-art image deblurring methods on both benchmark and real-world images.

Citation History

Jan 26, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Feb 1, 2026
5+5