Self-Assembling Graph Perceptrons

0citations
0
Citations
#2219
in NeurIPS 2025
of 5858 papers
6
Authors
3
Data Points

Abstract

Inspired by the workings of biological brains, humans have designed artificial neural networks (ANNs), sparking profound advancements across various fields. However, the biological brain possesses high plasticity, enabling it to develop simple, efficient, and powerful structures to cope with complex external environments. In contrast, the superior performance of ANNs often relies on meticulously crafted architectures, which can make them vulnerable when handling complex inputs. Moreover, overparameterization often characterizes the most advanced ANNs. This paper explores the path toward building streamlined and plastic ANNs. Firstly, we introduce the Graph Perceptron (GP), which extends the most fundamental ANN, the Multi-Layer Perceptron (MLP). Subsequently, we incorporate a self-assembly mechanism on top of GP called Self-Assembling Graph Perceptron (SAGP). During training, SAGP can autonomously adjust the network's number of neurons and synapses and their connectivity. SAGP achieves comparable or even superior performance with only about 5% of the size of an MLP. We also demonstrate the SAGP's advantages in enhancing model interpretability and feature selection.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0