Empowering Decision Trees via Shape Function Branching

0
citations
#2219
in NEURIPS 2025
of 5858 papers
2
Top Authors
4
Data Points

Abstract

Decision trees are prized for their interpretability and strong performance on tabular data. Yet, their reliance on simple axis-aligned linear splits often forces deep, complex structures to capture non-linear feature effects, undermining human comprehension of the constructed tree. To address this limitation, we propose a novel generalization of a decision tree, the Shape Generalized Tree (SGT), in which each internal node applies a learnable axis-aligned shape function to a single feature, enabling rich, non-linear partitioning in one split. As users can easily visualize each node's shape function, SGTs are inherently interpretable and provide intuitive, visual explanations of the model's decision mechanisms. To learn SGTs from data, we propose ShapeCART, an efficient induction algorithm for SGTs. We further extend the SGT framework to bivariate shape functions (S$^2$GT) and multi-way trees (SGT$_K$), and present Shape$^2$CART and ShapeCART$_K$, extensions to ShapeCART for learning S$^2$GTs and SGT$_K$s, respectively. Experiments on various datasets show that SGTs achieve superior performance with reduced model size compared to traditional axis-aligned linear trees.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0
Feb 3, 2026
0