Metropolis-Hastings Sampling for 3D Gaussian Reconstruction

0
Citations
#2219
in NeurIPS 2025
of 5858 papers
3
Authors
3
Data Points

Abstract

We propose an adaptive sampling framework for 3D Gaussian Splatting (3DGS) that leverages comprehensive multi-view photometric error signals within a unified Metropolis-Hastings approach. Vanilla 3DGS heavily relies on heuristic-based density-control mechanisms (e.g., cloning, splitting, and pruning), which can lead to redundant computations or premature removal of beneficial Gaussians. Our framework overcomes these limitations by reformulating densification and pruning as a probabilistic sampling process, dynamically inserting and relocating Gaussians based on aggregated multi-view errors and opacity scores. Guided by Bayesian acceptance tests derived from these error-based importance scores, our method substantially reduces reliance on heuristics, offers greater flexibility, and adaptively infers Gaussian distributions without requiring predefined scene complexity. Experiments on benchmark datasets, including Mip-NeRF360, Tanks and Temples and Deep Blending, show that our approach reduces the number of Gaussians needed, achieving faster convergence while matching or modestly surpassing the view-synthesis quality of state-of-the-art models.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0