LaX: Boosting Low-Rank Training of Foundation Models via Latent Crossing

2
citations
#1951
in NEURIPS 2025
of 5858 papers
4
Top Authors
6
Data Points

Abstract

Training foundation models such as ViTs and LLMs requires tremendous computing cost. Low-rank matrix or tensor factorization offers a parameter-efficient alternative, but often downgrades performance due to the restricted parameter space. In this work, we introduce ${\textbf{Latent Crossing (LaX)}}$ -- a simple yet effective plug-and-play module that enhances the capacity of low-rank models by enabling information flow across low-rank subspaces. We extensively validate the benefits of LaX on pre-training tasks with ViT-Base/Large and LLaMA-like models ranging from 60M to 1B parameters. LaX boosts low-rank model performance to match or exceed the full-rank baselines while using 2-3$\times$ fewer parameters. When equipped with low-rank adapters (i.e., LoRA) for fine-tuning LLaMA-7/13B, LaX consistently improves performance on arithmetic and common sense reasoning tasks with negligible cost.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
2+2
Feb 13, 2026
2