Learning-Augmented Facility Location Mechanisms for the Envy Ratio Objective

0
citations
#3347
in NEURIPS 2025
of 5858 papers
4
Top Authors
7
Data Points

Abstract

The augmentation of algorithms with predictions of the optimal solution, such as from a machine-learning algorithm, has garnered significant attention in recent years, particularly in facility location problems. Moving beyond the traditional focus on utilitarian and egalitarian objectives, we design learning-augmented facility location mechanisms for the envy ratio objective, a fairness metric defined as the maximum ratio between the utilities of any two agents. For the deterministic setting, we propose a mechanism which utilizes predictions to achieve $\alpha$-consistency and $\frac{\alpha}{\alpha - 1}$-robustness for a selected parameter $\alpha \in [1,2]$, and prove its optimality. We also resolve open questions raised by Ding et al. [2020], devising a randomized mechanism without predictions to improve upon the best-known approximation ratio from $2$ to $1.8944$. Building upon these advancements, we construct a novel randomized mechanism which incorporates predictions to achieve improved performance guarantees.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0