"out-of-distribution generalization" Papers

43 papers found

Benign Overfitting in Out-of-Distribution Generalization of Linear Models

Shange Tang, Jiayun Wu, Jianqing Fan et al.

ICLR 2025posterarXiv:2412.14474
1
citations

BrainOOD: Out-of-distribution Generalizable Brain Network Analysis

Jiaxing Xu, Yongqiang Chen, Xia Dong et al.

ICLR 2025posterarXiv:2502.01688
6
citations

Extrapolation by Association: Length Generalization Transfer In Transformers

Ziyang Cai, Nayoung Lee, Avi Schwarzschild et al.

NeurIPS 2025spotlightarXiv:2506.09251
7
citations

Looking Inward: Language Models Can Learn About Themselves by Introspection

Felix Jedidja Binder, James Chua, Tomek Korbak et al.

ICLR 2025oralarXiv:2410.13787
40
citations

MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs

Ke Wang, Yiming QIN, Nikolaos Dimitriadis et al.

NeurIPS 2025posterarXiv:2506.07899
3
citations

Out-of-distribution Generalization for Total Variation based Invariant Risk Minimization

Yuanchao Wang, Zhao-Rong Lai, Tianqi Zhong

ICLR 2025posterarXiv:2502.19665
2
citations

Prismatic Synthesis: Gradient-based Data Diversification Boosts Generalization in LLM Reasoning

Jaehun Jung, Seungju Han, Ximing Lu et al.

NeurIPS 2025spotlightarXiv:2505.20161
15
citations

STRAP: Spatio-Temporal Pattern Retrieval for Out-of-Distribution Generalization

Haoyu Zhang, WentaoZhang, Hao Miao et al.

NeurIPS 2025oralarXiv:2505.19547
3
citations

Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data

Xingyu Ren, Pengwei Liu, Pengkai Wang et al.

NeurIPS 2025poster

A Circuit Domain Generalization Framework for Efficient Logic Synthesis in Chip Design

Zhihai Wang, Lei Chen, Jie Wang et al.

ICML 2024spotlight

A Fixed-Point Approach for Causal Generative Modeling

Meyer Scetbon, Joel Jennings, Agrin Hilmkil et al.

ICML 2024poster

A Generative Approach for Treatment Effect Estimation under Collider Bias: From an Out-of-Distribution Perspective

Baohong Li, Haoxuan Li, Anpeng Wu et al.

ICML 2024poster

Amend to Alignment: Decoupled Prompt Tuning for Mitigating Spurious Correlation in Vision-Language Models

Jie ZHANG, Xiaosong Ma, Song Guo et al.

ICML 2024poster

Causally Motivated Personalized Federated Invariant Learning with Shortcut-Averse Information-Theoretic Regularization

Xueyang Tang, Song Guo, Jingcai Guo et al.

ICML 2024poster

Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design

Leo Klarner, Tim G. J. Rudner, Garrett Morris et al.

ICML 2024poster

CRoFT: Robust Fine-Tuning with Concurrent Optimization for OOD Generalization and Open-Set OOD Detection

Lin Zhu, Yifeng Yang, Qinying Gu et al.

ICML 2024poster

Debiasing Multimodal Sarcasm Detection with Contrastive Learning

Mengzhao Jia, Can Xie, Liqiang Jing

AAAI 2024paperarXiv:2312.10493
43
citations

Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal Approach

Ziliang Chen, Yongsen Zheng, Zhao-Rong Lai et al.

AAAI 2024paperarXiv:2312.09758
4
citations

Discovering Environments with XRM

Mohammad Pezeshki, Diane Bouchacourt, Mark Ibrahim et al.

ICML 2024poster

Domain Invariant Learning for Gaussian Processes and Bayesian Exploration

Xilong Zhao, Siyuan Bian, Yaoyun Zhang et al.

AAAI 2024paperarXiv:2312.11318
2
citations

Empowering Graph Invariance Learning with Deep Spurious Infomax

Tianjun Yao, Yongqiang Chen, Zhenhao Chen et al.

ICML 2024poster

Ensemble Pruning for Out-of-distribution Generalization

Fengchun Qiao, Xi Peng

ICML 2024poster

Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize

Tianren Zhang, Chujie Zhao, Guanyu Chen et al.

ICML 2024poster

G-NAS: Generalizable Neural Architecture Search for Single Domain Generalization Object Detection

Fan Wu, Jinling Gao, Lanqing Hong et al.

AAAI 2024paperarXiv:2402.04672
22
citations

Graph Invariant Learning with Subgraph Co-mixup for Out-of-Distribution Generalization

Tianrui Jia, Haoyang Li, Cheng Yang et al.

AAAI 2024paperarXiv:2312.10988
32
citations

Graph Structure Extrapolation for Out-of-Distribution Generalization

Xiner Li, Shurui Gui, Youzhi Luo et al.

ICML 2024poster

Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting

Da Wang, Lin Li, Wei Wei et al.

ICML 2024poster

Invariant Random Forest: Tree-Based Model Solution for OOD Generalization

Yufan LIAO, Qi Wu, Xing Yan

AAAI 2024paperarXiv:2312.04273
3
citations

Invariant Risk Minimization Is A Total Variation Model

Zhao-Rong Lai, Weiwen Wang

ICML 2024poster

Learning Divergence Fields for Shift-Robust Graph Representations

Qitian Wu, Fan Nie, Chenxiao Yang et al.

ICML 2024poster

Learning Visual Abstract Reasoning through Dual-Stream Networks

Kai Zhao, Chang Xu, Bailu Si

AAAI 2024paperarXiv:2411.19451
9
citations

LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views

Yuji Roh, Qingyun Liu, Huan Gui et al.

ICML 2024poster

MSGNet: Learning Multi-Scale Inter-series Correlations for Multivariate Time Series Forecasting

Wanlin Cai, Yuxuan Liang, Xianggen Liu et al.

AAAI 2024paperarXiv:2401.00423
177
citations

OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift

Lin Li, Yifei Wang, Chawin Sitawarin et al.

ICML 2024poster

Optimistic Model Rollouts for Pessimistic Offline Policy Optimization

Yuanzhao Zhai, Yiying Li, Zijian Gao et al.

AAAI 2024paperarXiv:2401.05899

Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift

Benjamin Eyre, Elliot Creager, David Madras et al.

ICML 2024poster

Prometheus: Out-of-distribution Fluid Dynamics Modeling with Disentangled Graph ODE

Hao Wu, Huiyuan Wang, kun wang et al.

ICML 2024oral

RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction

Yemin Yu, Luotian Yuan, Ying WEI et al.

AAAI 2024paperarXiv:2312.10900

Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data

Nikita Tsoy, Nikola Konstantinov

ICML 2024poster

Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning

Haoxin Liu, Harshavardhan Kamarthi, Lingkai Kong et al.

ICML 2024oral

Training-free Video Temporal Grounding using Large-scale Pre-trained Models

Minghang Zheng, Xinhao Cai, Qingchao Chen et al.

ECCV 2024posterarXiv:2408.16219
20
citations

Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot

Zixuan Wang, Stanley Wei, Daniel Hsu et al.

ICML 2024poster

Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts

Shengzhuang Chen, Jihoon Tack, Yunqiao Yang et al.

ICML 2024poster