Causal Discovery from Conditionally Stationary Time Series

6citations
6
Citations
#248
in ICML 2025
of 3340 papers
7
Authors
1
Data Points

Abstract

Causal discovery, i.e., inferring underlying causal relationships from observational data, is highly challenging for AI systems. In a time series modeling context, traditional causal discovery methods mainly consider constrained scenarios with fully observed variables and/or data from stationary time-series. We develop a causal discovery approach to handle a wide class of nonstationary time series that areconditionally stationary, where the nonstationary behaviour is modeled as stationarity conditioned on a set of latent state variables. Named State-Dependent Causal Inference (SDCI), our approach is able to recover the underlying causal dependencies, with provable identifiablity for the state-dependent causal structures. Empirical experiments on nonlinear particle interaction data and gene regulatory networks demonstrate SDCI's superior performance over baseline causal discovery methods. Improved results over non-causal RNNs on modeling NBA player movements demonstrate the potential of our method and motivate the use of causality-driven methods for forecasting.

Citation History

Jan 28, 2026
6