MAP Estimation with Denoisers: Convergence Rates and Guarantees

2
Citations
#928
in NeurIPS 2025
of 5858 papers
4
Authors
2
Data Points

Abstract

Denoiser models have become powerful tools for inverse problems, enabling the use of pretrained networks to approximate the score of a smoothed prior distribution. These models are often used in heuristic iterative schemes aimed at solving Maximum a Posteriori (MAP) optimisation problems, where the proximal operator of the negative log-prior plays a central role. In practice, this operator is intractable, and practitioners plug in a pretrained denoiser as a surrogate—despite the lack of general theoretical justification for this substitution. In this work, we show that a simple algorithm, closely related to several used in practice, provably converges to the proximal operator under a log-concavity assumption on the prior $p$. We show that this algorithm can be interpreted as a gradient descent on smoothed proximal objectives. Our analysis thus provides a theoretical foundation for a class of empirically successful but previously heuristic methods

Citation History

Jan 26, 2026
2
Jan 27, 2026
2